Jump to content

The Future is Bright: Johnson Space Center Interns Shine Throughout Summer Term


NASA

Recommended Posts

  • Publishers

More than 100 interns supported operations at NASA’s Johnson Space Center in Houston this summer, each making an important impact on the agency’s mission success. Get to know seven stellar interns nominated by their mentors for their hard work and outstanding contributions.

A young woman wearing a safety helmet poses inside of an Orion spacecraft mockup.
Stella Alcorn stands inside the Orion mockup within Johnson Space Center’s Space Vehicle Mockup Facility.

Stella Alcorn

Assignment: Engineering Directorate, Guidance, Navigation, and Control Autonomous Flight Systems Branch, Orion Program

Education: Aeronautical and Astronautical Engineering, Purdue University; graduating May 2026

Proudest internship accomplishment: Learning a new software program and applying topics I learned in school to develop a dynamic overlay display prototype for Orion Rendezvous, Proximity Operations, and Docking. My eagerness to learn and support from my mentor and colleagues has allowed me to make great progress on writing code to enable new display prototyping capabilities to support future Artemis missions.

Important lesson learned: Ask questions and engage with coworkers because you don’t gain valuable skills or experience without putting yourself out there. It can be nerve-wracking to collaborate with new people, but I have learned that taking initiative opens a gateway of opportunities.

Advice for incoming interns: Get to know other interns, go to NASA events, don’t be afraid to reach out or ask questions to your mentor, peers, or superiors (even if they’re not in your office or branch). This internship is a privilege, and you should take advantage of all available opportunities. Make connections and learn, but also have fun!

A young woman poses for a photo with two female NASA astronauts outside.
Laila Deshotel meets NASA astronauts Zena Cardman and Jessica Watkins.

Laila Deshotel

Assignment: Safety and Mission Assurance Directorate, Space Habitation Systems Division, Computer Safety and Software Assurance Branch

Education: Mechanical Engineering, University of Texas at San Antonio; graduating 2026

Proudest internship accomplishment: Being of service to the International Space Station and Gateway Programs. I contributed to JAXA’s (Japan Aerospace Exploration Agency) unmanned cargo vehicle, the HTV-X, as a Computer-Based Control Systems (CBCS) safety reviewer. This involves understanding CBCS requirements, reviewing hazard reports in the given safety data package, and attending safety review panels. I am also assisting with the software safety and assurance for Gateway.

Important lesson learned: This term allowed me to see the results of taking initiative and networking with others for professional development outlets. When you aren’t stepping outside of your comfort, you don’t allow any room for further improvement.

Advice for incoming interns: Channel your passion for space into productive work by taking initiative and staying organized. Network actively, seek feedback, embrace learning opportunities, be adaptable, and maintain a positive attitude to make the most of your internship and pave the way for a successful career.

A young woman poses for a photo in the viewing room at the Mission Control Center at Johnson Space Center.
Hunter Kindt during a tour of the Mission Control Center at Johnson Space Center.

Hunter Kindt

Assignment: Safety and Mission Assurance Directorate, Space Habitation Systems Division, Computer Safety and Software Assurance Branch

Education: Mechanical Engineering, University of Wyoming; graduating December 2024

Proudest internship accomplishment: I am performing a hazard analysis on a spacesuit for armadillos for my exit presentation project. This was inspired by my “Texas to-do list” for the summer, which included seeing an armadillo. I also love iced coffee, and, for fun, I created a cartoon of an armadillo in a spacesuit drinking iced coffee. All of us at the safety review panel I was supporting had a good laugh about it, and it led to a conversation about the logistics of an armadillo in a spacesuit. This project demonstrates my ability to apply the knowledge I have learned during my internship, specifically in safety, to any situation accurately.

Favorite Johnson experience: On a professional level, it was the ability to work with JAXA personnel during the safety review panel for their new  HTV-X. Working and building connections with international partners is an experience I will never forget! On a personal level, it was touring the Mission Control Center and seeing the sun rise and set live from the International Space Station!

Advice for incoming interns: Say yes to any opportunity you are presented with.

A young woman stands behind a podium and speaks into a microphone.
Mia Garza speaks to Johnson Space Center employees and their family members during a launch viewing event for NASA’s Boeing Crew Flight Test.

Mia Garza

Assignment: Office of Communications

Education: Marketing, University of Houston’s Bauer School of Business; graduating December 2024

Proudest internship achievement: My intern project of creating and executing an employee engagement plan for NASA’s Boeing Crew Flight Test (CFT). I worked with two other interns to create a unique plan to get the Johnson workforce excited about the CFT launch. We created custom crew drinks with RoyalTEA & Coffee Co., held a crew sendoff event which also included a poster decorating party for employees, hosted CFT booths at center-wide events, and hung ‘Godspeed, Suni and Butch’ banners around campus. We ended the project with a fun viewing event for employees and their families.

Favorite Johnson experience: Planning the building 12 dedication that happened on July 19. The tasks have varied between planning the seating chart, writing scripts, and helping create the run of show for the event. But getting to experience the planning process of this event and seeing it come to life has been a surreal experience.

Important lesson learned: The true power of teamwork. It takes a village to accomplish all of the great things that happen here.

A young woman stands between two spacesuit displays.
Yosefine Santiago-Hernandez poses for a photo with two spacesuits.

Yosefine Santiago-Hernandez

Assignment: Safety and Mission Assurance Directorate, Space Habitation Systems Division, Computer Safety and Software Assurance Branch

Education: Mechanical Engineering, University of Puerto Rico-Mayaguez; graduating May 2027

Proudest internship accomplishment: Serving as lead representative for CBCS in a safety review panel of an International Space Station payload.

Favorite Johnson experience: Working while surrounded by space history. There is always something going on, and something to see. It has been incredible to tour places like the Mission Control Center, Neutral Buoyancy Laboratory, and vacuum chambers. Also, it was pretty cool to meet an astronaut from my home country, Puerto Rico.

Important lesson learned: To persevere and step out of my comfort zone. I am working on concepts I have not worked on previously and are not taught in the classroom, therefore it has been a challenge to learn about them and contribute to the work. I took this challenge with a positive attitude and have been able to gain further understanding of systems engineering and CBCS and complete my tasks.

A young woman stands on a raised platform in front of a mockup of an International Space Station Module.
Courtney Thompson during a tour of Johnson Space Center’s Space Vehicle Mockup Facility.

Courtney Thompson

Assignment: Center Operations Directorate, Logistics Division and Director’s Office

Education: Supply Chain Management, University of Nebraska-Lincoln; graduated December 2023

Proudest internship achievement: Getting here! Working at NASA was always the dream, though it didn’t seem like that was going to happen for me. I went back to school as a nontraditional business student a few years ago. I thought that would work against me but rolled the dice and here I am. Both my spring and summer internship mentors have been incredibly supportive during my time here. Temporary or not, this has been one of the best experiences of my life.

Important lesson learned: Remember what we are a part of. There are so many amazing things humanity has accomplished; many of those things are right here at NASA. Tour the facilities, ask questions, watch the launches, and celebrate and share with your friends. We are so lucky to get to witness these things up close and be a part of that history.

Advice for incoming interns: Always ask questions. Someone else probably has that question, too, or has never thought of things that way. It also helps show initiative and gets people to learn your name. Have a crazy new idea for something? Ask if it’s been done before or if it’s even feasible. And if they love the idea, you might just find more people to help make it happen.

A young man poses for a photo with two spacesuits in the background.
Luis Valdez during a tour of Johnson Space Center’s Space Vehicle Mockup Facility.

Luis Valdez

Assignment: Artificial Intelligence/Machine Learning – Software Development for Decision Intelligence Capability, Office of the Chief Information Officer’s Information, Data, and Analytics Services Team

Education: Computer Science, Texas A&M University; graduating May 2026

Proudest internship achievement: I’m proud of how much I’ve been able to learn and get done as the only intern on my project. It was pretty daunting at first, but I also saw it as an opportunity to show what I have to offer. Also, networking with other interns, civil servants, and even other companies like Google has been a dream come true.

Important lesson learned: Everything always changes. At the beginning of my internship, there was no clear path for me to take to achieve our objective, so it was all up to me to make the vision come to life. If something wasn’t working out, or if the customer wanted something different that wasn’t possible, I changed my methods to make it possible.

Advice for incoming interns: Get involved. Let yourself integrate fully into this internship. It’s a once-in-a-lifetime experience and working at NASA has been the dream of millions of people so make sure you take it all in. Also, connect with your mentor! They have so much to offer, and they truly want the best for you.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Apollo 11 mission in July 1969 completed the goal set by President John F. Kennedy in 1961 to land a man on the Moon and return him safely to the Earth before the end of the decade. At the time, NASA planned nine more Apollo Moon landing missions of increasing complexity and an Earth orbiting experimental space station. No firm human space flight plans existed once these missions ended in the mid-1970s. After taking office in 1969, President Richard M. Nixon chartered a Space Task Group (STG) to formulate plans for the nation’s space program for the coming decades. The STG’s proposals proved overly ambitious and costly to the fiscally conservative President who chose to take no action on them.

      Left: President John F. Kennedy addresses a Joint Session of Congress in May 1961. Middle: President Kennedy addresses a crowd at Rice University in Houston in September 1962. Right: President Lyndon B. Johnson addresses a crowd during a March 1968 visit to the Manned Spacecraft Center, now NASA’s Johnson Space Center, in Houston.
      On May 25, 1961, before a Joint Session of Congress, President John F. Kennedy committed the United States to the goal, before the decade was out, of landing a man on the Moon and returning him safely to the Earth. President Kennedy reaffirmed the commitment during an address at Rice University in Houston in September 1962. Vice President Lyndon B. Johnson, who played a leading role in establishing NASA in 1958, under Kennedy served as the Chair of the National Aeronautics and Space Council. Johnson worked with his colleagues in Congress to ensure adequate funding for the next several years to provide NASA with the needed resources to meet that goal.
      Following Kennedy’s assassination in November 1963, now President Johnson continued his strong support to ensure that his predecessor’s goal of a Moon landing could be achieved by the stipulated deadline. But with increasing competition for scarce federal resources from the conflict in southeast Asia and from domestic programs, Johnson showed less interest in any space endeavors to follow the Apollo Moon landings. NASA’s annual budget peaked in 1966 and began a steady decline three years before the agency met Kennedy’s goal. From a budgetary standpoint, the prospects of a vibrant, post-Apollo space program didn’t look all that rosy, the triumphs of the Apollo missions of 1968 and 1969 notwithstanding.

      Left: On March 5, 1969, President Richard M. Nixon, left, introduces Thomas O. Paine as the NASA Administrator nominee, as Vice President Spiro T. Agnew looks on. Middle: Proposed lunar landing sites through Apollo 20, per August 1969 NASA planning. Right: An illustration of the Apollo Applications Program experimental space station that later evolved into Skylab.
      Less than a month after assuming the Presidency in January 1969, Richard M. Nixon appointed a Space Task Group (STG), led by Vice President Spiro T. Agnew as the Chair of the National Aeronautics and Space Council, to report back to him on options for the American space program in the post-Apollo years. Members of the STG included NASA Acting Administrator Thomas O. Paine (confirmed by the Senate as administrator on March 20), the Secretary of Defense, and the Director of the Office of Science and Technology. At the time, the only approved human space flight programs included lunar landing missions through Apollo 20 and three long-duration missions to an experimental space station based on Apollo technology that evolved into Skylab.
      Beyond a general vague consensus that the United States human space flight program should continue, no approved projects existed once these missions ended by about 1975. With NASA’s intense focus on achieving the Moon landing within President Kennedy’s time frame, long-term planning for what might follow the Apollo Program garnered little attention. During a Jan. 27, 1969, meeting at NASA chaired by Acting Administrator Paine, a general consensus emerged that the next step after the Moon landing should involve the development of a 12-person earth-orbiting space station by 1975, followed by an even larger outpost capable of housing up to 100 people “with a multiplicity of capabilities.” In June, with the goal of the Moon landing almost at hand, NASA’s internal planning added the development of a space shuttle by 1977 to support the space station, the development of a lunar base by 1976, and the highly ambitious idea that the U.S. should prepare for a human mission to Mars as early as the 1980s. NASA presented these proposals to the STG for consideration in early July in a report titled “America’s Next Decades in Space.”

      Left: President Richard M. Nixon, right, greets the Apollo 11 astronauts aboard the U.S.S. Hornet after their return from the Moon. Middle: The cover page of the Space Task Group (STG) Report to President Nixon. Right: Meeting in the White House to present the STG Report to President Nixon. Image credit: courtesy Richard Nixon Presidential Library and Museum.
      Still bathing in the afterglow of the successful Moon landing, the STG presented its 29-page report “The Post-Apollo Space Program:  Directions for the Future” to President Nixon on Sep. 15, 1969, during a meeting at the White House. In its Conclusions and Recommendations section, the report noted that the United States should pursue a balanced robotic and human space program but emphasized the importance of the latter, with a long-term goal of a human mission to Mars before the end of the 20th century. The report proposed that NASA develop new systems and technologies that emphasized commonality, reusability, and economy in its future programs. To accomplish these overall objectives, the report presented three options:

      Option I – this option required more than a doubling of NASA’s budget by 1980 to enable a human Mars mission in the 1980s, establishment of a lunar orbiting space station, a 50-person Earth orbiting space station, and a lunar base. The option required a decision by 1971 on development of an Earth-to-orbit transportation system to support the space station. The option maintained a strong robotic scientific and exploration program.

      Option II – this option maintained NASA’s budget at then current levels for a few years, then anticipated a gradual increase to support the parallel development of both an earth orbiting space station and an Earth-to-orbit transportation system, but deferred a Mars mission to about 1986. The option maintained a strong robotic scientific and exploration program, but smaller than in Option I.

      Option III – essentially the same as Option II but deferred indefinitely the human Mars mission.
      In separate letters, both Agnew and Paine recommended to President Nixon to choose Option II. 

      Left: Illustration of a possible space shuttle, circa 1969. Middle: Illustration of a possible 12-person space station, circa 1969. Right: An August 1969 proposed mission scenario for a human mission to Mars.
      The White House released the report to the public at a press conference on Sep. 17 with Vice President Agnew and Administrator Paine in attendance. Although he publicly supported a strong human spaceflight program, enjoyed the positive press he received when photographed with Apollo astronauts, and initially sounded positive about the STG options, President Nixon ultimately chose not to act on the report’s recommendations.  Nixon considered these plans too grandiose and far too expensive and relegated NASA to one America’s domestic programs without the special status it enjoyed during the 1960s. Even some of the already planned remaining Moon landing missions fell victim to the budgetary axe.
      On Jan. 4, 1970, NASA had to cancel Apollo 20 since the Skylab program needed its Saturn V rocket to launch the orbital workshop. In 1968, then NASA Administrator James E. Webb had turned off the Saturn V assembly line and none remained beyond the original 15 built under contract. In September 1970, reductions in NASA’s budget forced the cancellation of two more Apollo missions, and  in 1971 President Nixon considered cancelling two more. He reversed himself and they flew as Apollo 16 and Apollo 17 in 1972, the final Apollo Moon landing missions.

      Left: NASA Administrator James C. Fletcher, left, and President Richard M. Nixon announce the approval to proceed with space shuttle development in 1972. Middle: First launch of the space shuttle in 1981. Right: In 1984, President Ronald W. Reagan directs NASA to build a space station.
      More than two years after the STG submitted its report, in January 1972 President Nixon directed NASA Administrator James C. Fletcher to develop the Space Transportation System, the formal name for the space shuttle, the only element of the recommendations to survive the budgetary challenges.  NASA anticipated the first orbital flight of the program in 1979, with the actual first flight occurring two years later. Twelve years elapsed after Nixon’s shuttle decision when President Ronald W. Reagan approved the development of a space station, the second major component of the STG recommendation.  14 years later, the first element of that program reached orbit. In those intervening years, NASA had redesigned the original American space station, leading to the development of a multinational orbiting laboratory called the International Space Station. Humans have inhabited the space station continuously for the past quarter century, conducting world class and cutting edge scientific and engineering research. Work on the space station helps enable future programs, returning humans to the Moon and later sending them on to Mars and other destinations.

      The International Space Station as it appeared in 2021.
      Explore More
      7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 6 days ago 9 min read 30 Years Ago: STS-64 Astronauts Test a Spacewalk Rescue Aid
      Article 6 days ago 5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
      Article 2 weeks ago View the full article
    • By NASA
      Manuel Retana arrived in the U.S. at 15 years old, unable to speak English and with nothing but a dream and $200 in his pocket. Now, he plays a crucial role implementing life support systems on spacecraft that will carry humans to the Moon and, eventually, Mars—paving the way for the next frontier of space exploration. 

      A project manager for NASA’s Johnson Space Center Life Support Systems Branch in Houston, Retana helps to ensure astronaut safety aboard the International Space Station and for future Artemis missions. His work involves tracking on-orbit technical issues, managing the cost and schedule impacts of flight projects, and delivering emergency hardware. 
      Manuel Retana stands in front of NASA’s Space Launch System rocket at Kennedy Space Center in Florida. One of his most notable achievements came during the qualification of the Orion Smoke Eater Filter for the Artemis II and III missions. The filter is designed to remove harmful gases and particulates from the crew cabin in the event of a fire inside the spacecraft. Retana was tasked with creating a cost-effective test rig – a critical step for making the filter safe for flight. 

      Retana’s philosophy is simple: “Rockets do not build themselves. People build rockets, and your ability to work with people will define how well your rocket is built.” 

      Throughout his career, Retana has honed his soft skills—communication, leadership, collaboration, and conflict resolution—to foster an environment of success. 

      Retana encourages his colleagues to learn new languages and share their unique perspectives. He even founded NASA’s first Mariachi ensemble, allowing him to share his cultural heritage in the workplace. 

      He believes diversity of thought is a key element in solving complex challenges as well as creating an environment where everyone feels comfortable sharing their perspectives. 

      “You need to be humble and have a willingness to always be learning,” he said. “What makes a strong team is the fact that not everyone thinks the same way.” 
      Manuel Retana, center, performs with the Mariachi Ensemble group at NASA’s Johnson Space Center in Houston. For the future of space exploration, Retana is excited about the democratization of space, envisioning a world where every country has the opportunity to explore. He is eager to see humanity reach the Moon, Mars, and beyond, driven by the quest to answer the universe’s most enigmatic questions. 

      To the Artemis Generation, he says, “Never lose hope, and it is never too late to start following your dreams, no matter how far you are.” 
      View the full article
    • By NASA
      The International Space Station is pictured from the SpaceX Crew Dragon Endeavour during a fly around.NASA NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov are headed to the International Space Station for the agency’s SpaceX Crew-9 mission in September. Once on station, these crew members will support scientific investigations that include studies of blood clotting, effects of moisture on plants grown in space, and vision changes in astronauts.

      Here are details on some of the work scheduled during the Crew-9 expedition:

      Blood cell development in space
      Megakaryocytes Orbiting in Outer Space and Near Earth (MeF1) investigates how environmental conditions affect the development and function of megakaryocytes and platelets. Megakaryocytes, large cells found in bone marrow, and platelets, pieces of these cells, play important roles in blood clotting and immune response.

      “Understanding the development and function of megakaryocytes and platelets during long-duration spaceflight is crucial to safeguarding the health of astronauts,” said Hansjorg Schwertz, principal investigator, at the University of Utah. “Sending megakaryocyte cell cultures into space offers a unique opportunity to explore their intricate differentiation process. Microgravity also may impact other blood cells, so the insights we gain are likely to enhance our overall comprehension of how spaceflight influences blood cell production.”

      Results could provide critical knowledge about the risks of changes in inflammation, immune responses, and clot formation in spaceflight and on the ground.
      Scanning electron-microscopy image of human platelets prior to launch to the International Space Station.University of Utah/Megakaryocytes PI Team Patches for NICER
      The Neutron Star Interior Composition Explorer (NICER) telescope on the exterior of the space station measures X-rays emitted by neutron stars and other cosmic objects to help answer questions about matter and gravity.

      In May 2023, NICER developed a “light leak” that allows sunlight to interfere with daytime measurements. Special patches designed to cover some of the damage will be installed during a future spacewalk, returning the instrument to around-the-clock operation.

      “This will be the fourth science observatory and first X-ray telescope in orbit to be repaired by astronauts,” said principal investigator Keith Gendreau at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In just a year, we diagnosed the problem, designed and tested a solution, and delivered it for launch. The space station team — from managers and safety experts to engineers and astronauts — helped us make it happen. We’re looking forward to getting back to normal science operations.”
      This view shows NICER’s 56 X-ray concentrators. Astronauts plan to cover some of them with special patches on a future spacewalk. NASA Vitamins for vision
      Some astronauts experience vision changes, a condition called Spaceflight-Associated Neuro-ocular Syndrome. The B Complex investigation tests whether a daily B vitamin supplement can prevent or mitigate this problem and assesses how genetics may influence individual response.

      “We still do not know exactly what causes this syndrome, and not everyone gets it,” said Sara Zwart, principal investigator, at the University of Texas Medical Branch, Houston. “It is likely many factors, and biological variations that make some astronauts more susceptible than others.”

      One such variation could be related to a metabolic pathway that requires B vitamins to function properly. Inefficiencies in this pathway can affect the inner lining of blood vessels, resulting in leaks that may contribute to vision changes. Providing B vitamins known to affect blood vessel function positively could minimize issues in genetically at-risk astronauts.

      “The concept of this study is based on 13 years of flight and ground research,” Zwart said. “We are excited to finally flight test a low-risk countermeasure that could mitigate the risk on future missions, including those to Mars.”
      NASA astronaut Mark Vande Hei conducts a vision exam on the International Space StationNASA Watering the space garden
      As people travel farther from Earth for longer, growing food becomes increasingly important. Scientists conducted many plant growth experiments on the space station using its Veggie hardware, including Veg-01B, which demonstrated that ‘Outredgeous’ red romaine lettuce is suitable for crop production in space.

      Plant Habitat-07 uses this lettuce to examine how moisture conditions affect the nutritional quality and microbial safety of plants. The Advanced Plant Habitat controls humidity, temperature, air, light, and soil moisture, creating the precise conditions needed for the experiment.

      Using a plant known to grow well in space removes a challenging variable from the equation, explained Chad Vanden Bosch, principal investigator at Redwire, and this lettuce also has been proven to be safe to consume when grown in space.

      “For crews building a base on the Moon or Mars, tending to plants may be low on their list of responsibilities, so plant growth systems need to be automated,” Bosch said. “Such systems may not always provide the perfect growing conditions, though, so we need to know if plants grown in suboptimal conditions are safe to consume.”
      This preflight image shows lettuce grown under control (left) and flood (right) moisture treatments. Plant Habitat-07 team Melissa Gaskill
      International Space Station Research Communications Team
      NASA’s Johnson Space Center
      Search this database of scientific experiments to learn more about those mentioned in this article.
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      Space Station Research and Technology
      Station Benefits for Humanity
      Humans In Space
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This bar graph shows GISTEMP summer global temperature anomalies for 2023 (shown in yellow) and 2024 (shown in red). June through August is considered meteorological summer in the Northern Hemisphere. The white lines indicate the range of estimated temperatures. The warmer-than-usual summers continue a long-term trend of warming, driven primarily by human-caused greenhouse gas emissions. NASA/Peter Jacobs The agency also shared new state-of-the-art datasets that allow scientists to track Earth’s temperature for any month and region going back to 1880 with greater certainty.

      August 2024 set a new monthly temperature record, capping Earth’s hottest summer since global records began in 1880, according to scientists at NASA’s Goddard Institute for Space Studies (GISS) in New York. The announcement comes as a new analysis upholds confidence in the agency’s nearly 145-year-old temperature record.
      June, July, and August 2024 combined were about 0.2 degrees Fahrenheit (about 0.1 degrees Celsius) warmer globally than any other summer in NASA’s record — narrowly topping the record just set in 2023. Summer of 2024 was 2.25 F (1.25 C) warmer than the average summer between 1951 and 1980, and August alone was 2.34 F (1.3 C) warmer than average. June through August is considered meteorological summer in the Northern Hemisphere.
      “Data from multiple record-keepers show that the warming of the past two years may be neck and neck, but it is well above anything seen in years prior, including strong El Niño years,” said Gavin Schmidt, director of GISS. “This is a clear indication of the ongoing human-driven warming of the climate.”
      NASA assembles its temperature record, known as the GISS Surface Temperature Analysis (GISTEMP), from surface air temperature data acquired by tens of thousands of meteorological stations, as well as sea surface temperatures from ship- and buoy-based instruments. It also includes measurements from Antarctica. Analytical methods consider the varied spacing of temperature stations around the globe and urban heating effects that could skew the calculations.
      The GISTEMP analysis calculates temperature anomalies rather than absolute temperature. A temperature anomaly shows how far the temperature has departed from the 1951 to 1980 base average.
      New assessment of temperature record
      The summer record comes as new research from scientists at the Colorado School of Mines, National Science Foundation, the National Atmospheric and Oceanic Administration (NOAA), and NASA further increases confidence in the agency’s global and regional temperature data.
      “Our goal was to actually quantify how good of a temperature estimate we’re making for any given time or place,” said lead author Nathan Lenssen, a professor at the Colorado School of Mines and project scientist at the National Center for Atmospheric Research (NCAR).
      This visualization of GISTEMP monthly temperatures with the seasonal cycle derived from the Global Modeling and Assimilation Office’s MERRA-2 model compares 2023 (in red) and 2024 (in purple), with a transparent ribbon around each indicating the confidence intervals from the new GISTEMP uncertainty calculation. The white lines show monthly temperatures from the years 1961 to 2022. June, July, and August 2024 combined were about 0.2 degrees Fahrenheit (about 0.1 degrees Celsius) warmer globally than any other summer in NASA’s record — narrowly topping the record set in 2023.NASA/Peter Jacobs/Katy Mersmann The researchers affirmed that GISTEMP is correctly capturing rising surface temperatures on our planet and that Earth’s global temperature increase since the late 19th century — summer 2024 was about 2.7 F (1.51 C) warmer than the late 1800s — cannot be explained by any uncertainty or error in the data.
      The authors built on previous work showing that NASA’s estimate of global mean temperature rise is likely accurate to within a tenth of a degree Fahrenheit in recent decades. For their latest analysis, Lenssen and colleagues examined the data for individual regions and for every month going back to 1880.  
      Estimating the unknown
      Lenssen and colleagues provided a rigorous accounting of statistical uncertainty within the GISTEMP record. Uncertainty in science is important to understand because we cannot take measurements everywhere. Knowing the strengths and limitations of observations helps scientists assess if they’re really seeing a shift or change in the world.
      The study confirmed that one of the most significant sources of uncertainty in the GISTEMP record is localized changes around meteorological stations. For example, a previously rural station may report higher temperatures as asphalt and other heat-trapping urban surfaces develop around it. Spatial gaps between stations also contribute some uncertainty in the record. GISTEMP accounts for these gaps using estimates from the closest stations.
      Previously, scientists using GISTEMP estimated historical temperatures using what’s known in statistics as a confidence interval — a range of values around a measurement, often read as a specific temperature plus or minus a few fractions of degrees. The new approach uses a method known as a statistical ensemble: a spread of the 200 most probable values. While a confidence interval represents a level of certainty around a single data point, an ensemble tries to capture the whole range of possibilities.
      The distinction between the two methods is meaningful to scientists tracking how temperatures have changed, especially where there are spatial gaps. For example: Say GISTEMP contains thermometer readings from Denver in July 1900, and a researcher needs to estimate what conditions were 100 miles away. Instead of reporting the Denver temperature plus or minus a few degrees, the researcher can analyze scores of equally probable values for southern Colorado and communicate the uncertainty in their results.
      What does this mean for recent heat rankings?
      Every year, NASA scientists use GISTEMP to provide an annual global temperature update, with 2023 ranking as the hottest year to date.
      Other researchers affirmed this finding, including NOAA and the European Union’s Copernicus Climate Change Service. These institutions employ different, independent methods to assess Earth’s temperature. Copernicus, for instance, uses an advanced computer-generated approach known as reanalysis. 
      The records remain in broad agreement but can differ in some specific findings. Copernicus determined that July 2023 was Earth’s hottest month on record, for example, while NASA found July 2024 had a narrow edge. The new ensemble analysis has now shown that the difference between the two months is smaller than the uncertainties in the data. In other words, they are effectively tied for hottest. Within the larger historical record the new ensemble estimates for summer 2024 were likely 2.52-2.86 degrees F (1.40-1.59 degrees C) warmer than the late 19th century, while 2023 was likely 2.34-2.68 degrees F (1.30-1.49 degrees C) warmer.

      Read More Share
      Details
      Last Updated Sep 11, 2024 LocationGISS Related Terms
      Earth Climate Change Goddard Institute for Space Studies Goddard Space Flight Center Explore More
      6 min read Childhood Snow Days Transformed Linette Boisvert into a Sea Ice Scientist
      Article 1 day ago 7 min read Kyle Helson Finds EXCITE-ment in Exoplanet Exploration
      Article 1 day ago 5 min read NASA’s Hubble, Chandra Find Supermassive Black Hole Duo
      Like two Sumo wrestlers squaring off, the closest confirmed pair of supermassive black holes have…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      For some people, working for NASA is a lifelong dream. For others, it is an interesting and perhaps unexpected opportunity that comes up at just the right time and place.

      Everything from family ties and influential teachers to witnessing human spaceflight history and enjoying sci-fi entertainment has helped bring people of all backgrounds together at NASA’s Johnson Space Center in Houston. Several of them recently shared their inspiration to join the NASA team.
      ***
      “As a kid, I always had my head up looking at the stars. I loved astronomy and seeing videos of humans walking on the Moon fascinated me! I wanted to be the first female to walk on the Moon. When Star Wars came out, I wanted to build my own R2-D2 that could explore the galaxies. I was curious how things worked (so I could build a robot) and a cousin told me about engineering. That was the name for what I wanted to do! So, I went to the High School for Engineering Professions in Houston. The guidance counselor there told me about an opportunity to apply for a summer internship with NASA as a junior. I got in and I’ve worked with NASA as much as I could since I was 16 years old – internships and full-time positions. I may not get the chance to be an astronaut and walk on the Moon, but I know I will play a role in helping achieve that dream for another female and a person of color!”
      – Alicia Baker, engineering project manager for Portable Life Support System test support, JSC Engineering, Technology, and Science (JETS) Contract

      Alicia Baker in a spacesuit test chamber at Johnson Space Center.NASA/David DeHoyos “My dad was an aerospace engineer with Lockheed Martin. I went to take your kid to work day and got to stand in front of a booster engine. I’ve wanted to work in the space industry ever since. I almost didn’t enter the field after getting my aerospace degree, but I was fortunate to take an Intro to Human Spaceflight class during my last quarter of college. Without that class and the professor (who had worked at Johnson) I wouldn’t be here today. I’m so glad my path led me here. Johnson is such a great place to be, and I can look back and tell little Margaret that we did it!”

      – Margaret Kennedy, aerospace systems engineer, Engineering Directorate Crew and Thermal Systems Division

      Margaret Kennedy and her dad visited Space Center Houston when she started her job at NASA’s Johnson Space Center in October 2019.Image courtesy of Margaret Kennedy “In first grade, my teacher organized a ‘Space Week’ in which we learned about outer space. Her sons – who were studying engineering in college – came and launched model rockets for us. I knew from that point on that I wanted to work at NASA when I grew up.”

      – Krista Farrell, International Space Station attitude determination and control officer and motion control systems instructor; Boeing Starliner guidance, navigation, and control instructor

      Krista Farrell (center) stands with members of the Expedition 71 crew. From left: NASA astronauts Jeannette Epps, Matt Dominick, and Mike Barratt; Roscosmos cosmonaut Alexander Grebenkin; and NASA astronaut Tracy C. Dyson. NASA/Josh Valcarcel “I didn’t think I would ever work for NASA. But multiple professors in college encouraged me to challenge myself and do some space research. I realized that it was something that I was very passionate about. Thanks to my research work for the Europa Clipper as an undergraduate student, I got my first internship at NASA and subsequently an offer to join the Pathways Program. Now I am part of a small group of engineers that solve entry, descent, and landing problems for multiple missions on Earth, the Moon, and Mars.”
      – Sergio Sandoval, guidance engineer, Engineering Directorate Flight Mechanics and Trajectory Design Branch

      Sergio Sandoval helps staff a NASA table during a Johnson Space Center community engagement event.Image courtesy of Sergio Sandoval
      “Dad would take me to the viewing room of the original Mission Operations Control Room (MOCR) during the Apollo era. He was one of the people supporting MOCR in the Staff Support Room. I have worked at Johnson for 27 years [as a contractor] for Lockheed Martin, Hamilton Sundstrand, and Jacobs Technology.”
      – David Fanelli, software engineer, Energy Systems Test Area

      “In early 1969, when I was a boy, my uncle visited the Johnson Space Center and brought back astronaut and mission photos of the recently completed Apollo 8 lunar orbiting mission. Those photos, coupled with a Saturn V rocket model I assembled, and the Time Life records and books about the Apollo space program my parents purchased for me, sparked my imagination. I knew I wanted to work for NASA one day. It wasn’t until many years later that that dream became a reality, when I joined NASA’s co-op program for college students during my second attempt to become an aeronautical engineer. After I graduated college, I began working full time as a civil servant engineer at Johnson.”
      – David Fletcher, NASA lead, Gateway-Ready Avionics Integration Lab

      David Fletcher (center) with his daughters Jessica (left) and Erica (right). Image courtesy of David Fletcher
      “I remember watching Star Trek and Star Wars as a kid with my dad. I found some of his college notes in a box one day and thought the small, neat print on graph paper pads was really pretty. He went to the University of Texas at Austin to study astrophysics and engineering, but he never got to finish. Fast forward to 2022 and I find myself in Houston for an unknown amount of time, so I decided to go out and make some friends. I met a woman at a Geeky Game Night, and I learned that she was a food scientist at NASA! After talking some more, she told me to send her my resume. Later that week I received a call to set up an interview. I’m still in awe of how that one chance connection led me to my childhood dream of working at NASA.”

      – Kristin Dillon, document/IT specialist, Space Food Systems Laboratory


      “I grew up in a small agricultural village in India. My first introduction to spaceflight was reading Russian cosmonauts’ translated accounts of the Apollo-Soyuz Test Project as a young girl. I am still not sure whether my father picked that book for me on a whim or with a grand dream for his daughter, but it certainly had me hooked. However, I found my true calling to make human spaceflight safer and more efficient after witnessing the Columbia mishap. India, at the time, did not have a human spaceflight program. Thus started a 20-year-long grand adventure of seeking opportunities, pursuing them, immigrating to the United States, and finding my path to NASA, which culminated in a Pathways internship at Johnson.”

      – Poonampreet Kaur Josan, three-time Pathways intern, currently supporting the Human Health and Performance Directorate Habitability and Human Factors Branch
      View the full article
  • Check out these Videos

×
×
  • Create New...