Jump to content

The Future is Bright: Johnson Space Center Interns Shine Throughout Summer Term


NASA

Recommended Posts

  • Publishers

More than 100 interns supported operations at NASA’s Johnson Space Center in Houston this summer, each making an important impact on the agency’s mission success. Get to know seven stellar interns nominated by their mentors for their hard work and outstanding contributions.

A young woman wearing a safety helmet poses inside of an Orion spacecraft mockup.
Stella Alcorn stands inside the Orion mockup within Johnson Space Center’s Space Vehicle Mockup Facility.

Stella Alcorn

Assignment: Engineering Directorate, Guidance, Navigation, and Control Autonomous Flight Systems Branch, Orion Program

Education: Aeronautical and Astronautical Engineering, Purdue University; graduating May 2026

Proudest internship accomplishment: Learning a new software program and applying topics I learned in school to develop a dynamic overlay display prototype for Orion Rendezvous, Proximity Operations, and Docking. My eagerness to learn and support from my mentor and colleagues has allowed me to make great progress on writing code to enable new display prototyping capabilities to support future Artemis missions.

Important lesson learned: Ask questions and engage with coworkers because you don’t gain valuable skills or experience without putting yourself out there. It can be nerve-wracking to collaborate with new people, but I have learned that taking initiative opens a gateway of opportunities.

Advice for incoming interns: Get to know other interns, go to NASA events, don’t be afraid to reach out or ask questions to your mentor, peers, or superiors (even if they’re not in your office or branch). This internship is a privilege, and you should take advantage of all available opportunities. Make connections and learn, but also have fun!

A young woman poses for a photo with two female NASA astronauts outside.
Laila Deshotel meets NASA astronauts Zena Cardman and Jessica Watkins.

Laila Deshotel

Assignment: Safety and Mission Assurance Directorate, Space Habitation Systems Division, Computer Safety and Software Assurance Branch

Education: Mechanical Engineering, University of Texas at San Antonio; graduating 2026

Proudest internship accomplishment: Being of service to the International Space Station and Gateway Programs. I contributed to JAXA’s (Japan Aerospace Exploration Agency) unmanned cargo vehicle, the HTV-X, as a Computer-Based Control Systems (CBCS) safety reviewer. This involves understanding CBCS requirements, reviewing hazard reports in the given safety data package, and attending safety review panels. I am also assisting with the software safety and assurance for Gateway.

Important lesson learned: This term allowed me to see the results of taking initiative and networking with others for professional development outlets. When you aren’t stepping outside of your comfort, you don’t allow any room for further improvement.

Advice for incoming interns: Channel your passion for space into productive work by taking initiative and staying organized. Network actively, seek feedback, embrace learning opportunities, be adaptable, and maintain a positive attitude to make the most of your internship and pave the way for a successful career.

A young woman poses for a photo in the viewing room at the Mission Control Center at Johnson Space Center.
Hunter Kindt during a tour of the Mission Control Center at Johnson Space Center.

Hunter Kindt

Assignment: Safety and Mission Assurance Directorate, Space Habitation Systems Division, Computer Safety and Software Assurance Branch

Education: Mechanical Engineering, University of Wyoming; graduating December 2024

Proudest internship accomplishment: I am performing a hazard analysis on a spacesuit for armadillos for my exit presentation project. This was inspired by my “Texas to-do list” for the summer, which included seeing an armadillo. I also love iced coffee, and, for fun, I created a cartoon of an armadillo in a spacesuit drinking iced coffee. All of us at the safety review panel I was supporting had a good laugh about it, and it led to a conversation about the logistics of an armadillo in a spacesuit. This project demonstrates my ability to apply the knowledge I have learned during my internship, specifically in safety, to any situation accurately.

Favorite Johnson experience: On a professional level, it was the ability to work with JAXA personnel during the safety review panel for their new  HTV-X. Working and building connections with international partners is an experience I will never forget! On a personal level, it was touring the Mission Control Center and seeing the sun rise and set live from the International Space Station!

Advice for incoming interns: Say yes to any opportunity you are presented with.

A young woman stands behind a podium and speaks into a microphone.
Mia Garza speaks to Johnson Space Center employees and their family members during a launch viewing event for NASA’s Boeing Crew Flight Test.

Mia Garza

Assignment: Office of Communications

Education: Marketing, University of Houston’s Bauer School of Business; graduating December 2024

Proudest internship achievement: My intern project of creating and executing an employee engagement plan for NASA’s Boeing Crew Flight Test (CFT). I worked with two other interns to create a unique plan to get the Johnson workforce excited about the CFT launch. We created custom crew drinks with RoyalTEA & Coffee Co., held a crew sendoff event which also included a poster decorating party for employees, hosted CFT booths at center-wide events, and hung ‘Godspeed, Suni and Butch’ banners around campus. We ended the project with a fun viewing event for employees and their families.

Favorite Johnson experience: Planning the building 12 dedication that happened on July 19. The tasks have varied between planning the seating chart, writing scripts, and helping create the run of show for the event. But getting to experience the planning process of this event and seeing it come to life has been a surreal experience.

Important lesson learned: The true power of teamwork. It takes a village to accomplish all of the great things that happen here.

A young woman stands between two spacesuit displays.
Yosefine Santiago-Hernandez poses for a photo with two spacesuits.

Yosefine Santiago-Hernandez

Assignment: Safety and Mission Assurance Directorate, Space Habitation Systems Division, Computer Safety and Software Assurance Branch

Education: Mechanical Engineering, University of Puerto Rico-Mayaguez; graduating May 2027

Proudest internship accomplishment: Serving as lead representative for CBCS in a safety review panel of an International Space Station payload.

Favorite Johnson experience: Working while surrounded by space history. There is always something going on, and something to see. It has been incredible to tour places like the Mission Control Center, Neutral Buoyancy Laboratory, and vacuum chambers. Also, it was pretty cool to meet an astronaut from my home country, Puerto Rico.

Important lesson learned: To persevere and step out of my comfort zone. I am working on concepts I have not worked on previously and are not taught in the classroom, therefore it has been a challenge to learn about them and contribute to the work. I took this challenge with a positive attitude and have been able to gain further understanding of systems engineering and CBCS and complete my tasks.

A young woman stands on a raised platform in front of a mockup of an International Space Station Module.
Courtney Thompson during a tour of Johnson Space Center’s Space Vehicle Mockup Facility.

Courtney Thompson

Assignment: Center Operations Directorate, Logistics Division and Director’s Office

Education: Supply Chain Management, University of Nebraska-Lincoln; graduated December 2023

Proudest internship achievement: Getting here! Working at NASA was always the dream, though it didn’t seem like that was going to happen for me. I went back to school as a nontraditional business student a few years ago. I thought that would work against me but rolled the dice and here I am. Both my spring and summer internship mentors have been incredibly supportive during my time here. Temporary or not, this has been one of the best experiences of my life.

Important lesson learned: Remember what we are a part of. There are so many amazing things humanity has accomplished; many of those things are right here at NASA. Tour the facilities, ask questions, watch the launches, and celebrate and share with your friends. We are so lucky to get to witness these things up close and be a part of that history.

Advice for incoming interns: Always ask questions. Someone else probably has that question, too, or has never thought of things that way. It also helps show initiative and gets people to learn your name. Have a crazy new idea for something? Ask if it’s been done before or if it’s even feasible. And if they love the idea, you might just find more people to help make it happen.

A young man poses for a photo with two spacesuits in the background.
Luis Valdez during a tour of Johnson Space Center’s Space Vehicle Mockup Facility.

Luis Valdez

Assignment: Artificial Intelligence/Machine Learning – Software Development for Decision Intelligence Capability, Office of the Chief Information Officer’s Information, Data, and Analytics Services Team

Education: Computer Science, Texas A&M University; graduating May 2026

Proudest internship achievement: I’m proud of how much I’ve been able to learn and get done as the only intern on my project. It was pretty daunting at first, but I also saw it as an opportunity to show what I have to offer. Also, networking with other interns, civil servants, and even other companies like Google has been a dream come true.

Important lesson learned: Everything always changes. At the beginning of my internship, there was no clear path for me to take to achieve our objective, so it was all up to me to make the vision come to life. If something wasn’t working out, or if the customer wanted something different that wasn’t possible, I changed my methods to make it possible.

Advice for incoming interns: Get involved. Let yourself integrate fully into this internship. It’s a once-in-a-lifetime experience and working at NASA has been the dream of millions of people so make sure you take it all in. Also, connect with your mentor! They have so much to offer, and they truly want the best for you.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Over the past two years, the first U.S. space service component has tripled in size, established a 24/7 space watch cell and executed three Tier 1 Combatant Command exercises.

      View the full article
    • By NASA
      The future of human space exploration took a bold step forward at NASA’s Johnson Space Center in Houston on Nov. 15, 2024, as Texas A&M University leaders’ broke ground for the Texas A&M University Space Institute.

      Texas state officials, NASA leaders, and distinguished guests participated in the ceremony, held near the future development site of Johnson’s new Exploration Park, marking an important milestone in a transformative partnership to advance research, innovation, and human spaceflight.
      NASA’s Johnson Space Center Director Vanessa Wyche gives remarks at the Texas A&M University Space Institute groundbreaking ceremony in Houston on Nov. 15, 2024. NASA/Robert Markowitz “This groundbreaking is not just a physical act of breaking ground or planting a flag,” said Johnson Director Vanessa Wyche. “This is the moment our vision—to dare to expand frontiers and unite with our partners to explore for the benefit of all humanity—will be manifested.”

      The Texas A&M University Space Institute will be the first tenant at NASA’s 240-acre Exploration Park to support facilities that enhance commercial access, foster a collaborative development environment, and strengthen the United States’ competitiveness in the space and aerospace industries.
      Chairman Bill Mahomes Jr. of the Texas A&M University System Board of Regents, left, Chancellor John Sharp of the Texas A&M University System, and Johnson Director Vanessa Wyche hold a commemorative plaque celebrating the establishment of the Texas A&M University Space Institute at Exploration Park. NASA/Robert Markowitz Exploration Park aims to foster research, technology transfer, and a sustainable pipeline of career development for the Artemis Generation and Texas workers transitioning to the space economy. The park represents a key achievement of Johnson’s 2024 Dare | Unite | Explore commitments, emphasizing its role as the hub of human spaceflight, developing strategic partnerships, and paving the way for a thriving space economy.

      Research conducted at the Space Institute is expected to accelerate human spaceflight by providing opportunities for the brightest minds worldwide to address the challenges of living in low Earth orbit, on the Moon, and on Mars.
      Senior leadership from Johnson Space Center gathers for the groundbreaking ceremony of the Texas A&M University Space Institute. NASA/Robert Markowitz Industry leaders and Johnson executives stood alongside NASA’s Lunar Terrain Vehicle and Space Exploration Vehicle, symbolizing their commitment to fostering innovation and collaboration.

      Texas A&M University Space Institute director and retired NASA astronaut Dr. Nancy Currie-Gregg and Dr. Rob Ambrose, Space Institute associate director, served as the masters of ceremony for the event. Johnson leaders present included Deputy Director Stephen Koerner; Associate Director Donna Shafer; Associate Director for Vision and Strategy Douglas Terrier; Director of External Relations Office Arturo Sanchez; and Chief Technologist and Director of the Business Development and Technology Integration Office Nick Skytland.

      Also in attendance were Texas State Rep. Greg Bonnen; Texas A&M University System Board of Regents Chairman William Mahomes Jr.; Texas A&M University System Chancellor John Sharp; Texas A&M University President and Retired Air Force Gen. Mark Welsh III; and Texas A&M Engineering Vice Chancellor and Dean Robert Bishop.
      Texas A&M University Space Institute Director and retired NASA astronaut Nancy Currie-Gregg plants a Texas A&M University Space Institute flag at Johnson Space Center, symbolizing the partnership between the institute and NASA.NASA/Robert Markowitz The institute, expected to open in September 2026, will feature the world’s largest indoor simulation spaces for lunar and Martian surface operations, high-bay laboratories, and multifunctional project rooms.

      “The future of Texas’ legacy in aerospace is brighter than ever as the Texas A&M Space Institute in Exploration Park will create an unparalleled aerospace, economic, business development, research, and innovation region across the state,” Wyche said. “Humanity’s next giant leap starts here!”
      View the full article
    • By NASA
      NASA astronaut and Expedition 72 Flight Engineer Nick Hague pedals on the Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), an exercise cycle located aboard the International Space Station’s Destiny laboratory module. CEVIS provides aerobic and cardiovascular conditioning through recumbent (leaning back position) or upright cycling activities.NASA Lee esta historia en español aquí.
      The International Space Station is humanity’s home in space and a research station orbiting about 250 miles above the Earth. NASA and its international partners have maintained a continuous human presence aboard the space station for more than 24 years, conducting research that is not possible on Earth.
      The people living and working aboard the microgravity laboratory also are part of the research being conducted, helping to address complex human health issues on Earth and prepare humanity for travel farther than ever before, including the Moon and Mars.
      Here are a few frequently asked questions about how NASA and its team of medical physicians, psychologists, nutritionists, exercise scientists, and other specialized caretakers ensure astronauts’ health and fitness aboard the orbiting laboratory. 
      How long is a typical stay aboard the International Space Station?
      A typical mission to the International Space Station lasts about six months, but can vary based on visiting spacecraft schedules, mission priorities, and other factors. NASA astronauts also have remained aboard the space station for longer periods of time. These are known as long-duration missions, and previous missions have given NASA volumes of data about long-term spaceflight and its effects on the human body, which the agency applies to any crewed mission. 
      During long-duration missions, NASA’s team of medical professionals focus on optimizing astronauts’ physical and behavioral health and their performance to help ensure mission success. These efforts also are helping NASA prepare for future human missions to the Moon, Mars, and beyond.
      How does NASA keep astronauts healthy while in space?
      NASA has a team of medical doctors, psychologists, and others on the ground dedicated to supporting the health and well-being of astronauts before, during, and after each space mission. NASA assigns physicians with specialized training in space medicine, called flight surgeons, to each crew once named to a mission. Flight surgeons oversee the health care and medical training as crew members prepare for their mission, and they monitor the crew’s health before, during, and after their mission to the space station.
      How does NASA support its astronauts’ mental and emotional well-being while in space?
      The NASA behavioral health team provides individually determined psychological support services for crew members and their families during each mission. Ensuring astronauts can thrive in extreme environments starts as early as the astronaut selection process, in which applicants are evaluated on competencies such as adaptability and resilience. Astronauts receive extensive training to help them use self-assessment tools and treatments to manage their behavioral health. NASA also provides training in expeditionary skills to prepare every astronaut for missions on important competencies, such as self-care and team care, communication, and leadership and followership skills.
      To help maintain motivation and morale aboard the space station, astronauts can email, call, and video conference with their family and friends, receive crew care packages aboard NASA’s cargo resupply missions, and teleconference with a psychologist, if needed.
      How does microgravity affect astronaut physical health?
      In microgravity, without the continuous load of Earth’s gravity, there are many changes to the human body. NASA understands many of the human system responses to the space environment, including adaptations to bone density, muscle, sensory-motor, and cardiovascular health, but there is still much to learn. These spaceflight effects vary from astronaut to astronaut, so NASA flight surgeons regularly monitor each crew member’s health during a mission and individualize diet and fitness routines to prioritize health and fitness while in space.
      Why do astronauts exercise in space?
      Each astronaut aboard the orbiting laboratory engages in specifically designed, Earth-like exercise plans. To maintain their strength and endurance, crew members are scheduled for two and a half hours of daily exercise to support muscle, bone, aerobic, and sensorimotor health. Current equipment onboard the space station includes the ARED (Advanced Resistive Exercise Device), which mimics weightlifting; a treadmill, called T2; and the CEVIS (Cycle Ergometer with Vibration Isolation and Stabilization System) for cardiovascular exercise.
      What roles do food and nutrition play in supporting astronaut health?
      Nutrition plays a critical role in maintaining an astronaut’s health and optimal performance before, during, and after their mission. Food also plays a psychosocial role during an astronaut’s long-duration stay aboard the space station. Experts working in NASA’s Space Food Systems Laboratory at the agency’s Johnson Space Center in Houston develop foods that are nutritious and appetizing. Crew members also have the opportunity to supplement the menu with personal favorites and off-the-shelf items, which can provide a taste of home.
      NASA astronaut and Expedition 71 Flight Engineer Tracy C. Dyson is pictured in the galley aboard the International Space Station’s Unity module showing off food packets from JAXA (Japan Aerospace Exploration Agency).NASA How does NASA know whether astronauts are getting the proper nutrients?
      NASA’s nutritional biochemistry dietitians and scientists determine the nutrients (vitamins, minerals, calories) the astronauts require while in space. This team tracks what each crew member eats through a tablet-based tracking program, which each astronaut completes daily. The data from the app is sent to the dietitians weekly to monitor dietary intake. Analyzing astronaut blood and urine samples taken before, during, and after space missions is a crucial part of studying how their bodies respond to the unique conditions of spaceflight. These samples provide valuable insight into how each astronaut adapts to microgravity, radiation, and other factors that affect human physiology in space.
      How do astronauts train to work together while in space?
      In addition to technical training, astronauts participate in team skills training. They learn effective group living skills and how to look out for and support one another. Due to its remote and isolated nature, long-duration spaceflight can make teamwork difficult. Astronauts must maintain situational awareness and implement the flight program in an ever-changing environment. Therefore, effective communication is critical when working as a team aboard station and with multiple support teams on the ground. Astronauts also need to be able to communicate complex information to people with different professional backgrounds. Ultimately, astronauts are people living and working together aboard the station and must be able to do a highly technical job and resolve any interpersonal issues that might arise.
      What happens if there is a medical emergency on the space station?
      All astronauts undergo medical training and have regular contact with a team of doctors closely monitoring their health on the ground. NASA also maintains a robust pharmacy and a suite of medical equipment onboard the space station to treat various conditions and injuries. If a medical emergency requires a return to Earth, the crew will return in the spacecraft they launched aboard to receive urgent medical care on the ground.
      Expedition 69 NASA astronaut Frank Rubio is seen resting and talking with NASA ISS Program Manager Joel Montalbano, kneeling left, NASA Flight Surgeon Josef Schmid, red hat, and NASA Chief of the Astronaut Office Joe Acaba, outside the Soyuz MS-23 spacecraft after he landed with Roscosmos cosmonauts Sergey Prokopyev and Dmitri Petelin in a remote area near the town of Zhezkazgan, Kazakhstan on Wednesday, Sept. 27, 2023.NASA/Bill Ingalls Learn more about NASA’s Human Health and Performance Directorate at:
      www.nasa.gov/hhp
      View the full article
    • By NASA
      On Nov. 6, 2024, NASA Night brought cosmic excitement to the Toyota Center, where Johnson Space Center employees joined 16,208 fans who interacted with NASA as they watched the Houston Rockets claim victory over the San Antonio Spurs. 

      Energy soared as International Space Station Program Manager Dana Weigel stepped up to take the first shot. 
      International Space Station Program Manager Dana Weigel takes the first shot on Nov. 6, 2024, as the Houston Rockets go up against the San Antonio Spurs at Toyota Center.NASA/Helen Arase Vargas The ceremonial first shot also gave back to the community, with Rockets owner Tilman Fertitta donating $1,000 to the Clutch City Foundation to support underserved youth through education, sports, and disaster relief. 

      Throughout the game, Johnson employees kept the crowd engaged with NASA trivia, creating a “launch countdown” energy that had fans cheering. The arena lit up as Adam Savage narrated a video showcasing the International Space Station’s groundbreaking contributions to science. From unlocking discoveries impossible on Earth to testing critical technologies for our return to the Moon, the orbiting laboratory plays a vital role in advancing medical and social breakthroughs that enhance life on our planet.  

      The Artemis II crew also appeared on the jumbotron, reminding everyone of NASA’s mission to establish a long-term presence on the Moon for scientific discovery, economic benefits, and to inspire a new generation of explorers. 
      Dana Weigel, center, shows off a Rockets jersey on the court with Rockets mascot Clutch, left, and NASA mascot Cosmo.NASA/Helen Arase Vargas  In the Sky Court area of the stadium concourse, Johnson volunteers held “mission control” with an interactive exhibit that drew fans in like a gravitational pull. From exploring a Space Launch System model and handling a spacesuit helmet and glove to touching a 3.4-billion-year-old Moon rock collected during Apollo 17, NASA’s booth offered attendees a glimpse into space exploration. 

      Visitors had the chance to ask questions and bring home mission pins, stickers, and hands-on activities, provided by the International Space Station Program and the Artemis campaign. Seventy-five “Lucky Row” fans also received bags filled with NASA outreach materials, courtesy of the Johnson Public Engagement team. 
      NASA’s Johnson Space Center volunteers connect with fans at the game through an interactive exhibit.NASA The Orion Flight Simulator, with its realistic switches and displays, provided an immersive experience that allowed fans to dock the Orion spacecraft to humanity’s first lunar space station, Gateway.  

      More than 600 fans eagerly lined up to experience NASA’s mobile exhibit trailer in the Toyota Center parking lot—drawing lines as long as those at the box office. 
      Fans engage with the Orion Flight Simulator at NASA’s booth. NASA/Helen Arase Vargas Fans also tested their skills with a crew assembly activity focused on science, technology, engineering, and mathematics, simulating the challenges astronauts face in orbit. NASA’s inflatable mascot, Cosmo, joined the action on the court, posing for photos and adding galactic fun to events like the T-shirt giveaway. 
      The Houston Rockets mascot Clutch and NASA mascot Cosmo team up on the court at Toyota Center in Houston.NASA/Helen Arase Vargas  NASA’s presence brought together the excitement of sports with the wonder of space exploration, inspiring fans to keep shooting for the stars. 

      View more images from the event below.  
      View the full article
    • By NASA
      Imagine designing technology that can survive on the Moon for up to a decade, providing a continuous energy supply. NASA selected three companies to develop such systems, aimed at providing a power source at the Moon’s South Pole for Artemis missions. 

      Three companies were awarded contracts in 2022 with plans to test their self-sustaining solar arrays at the Johnson Space Center’s Space Environment Simulation Laboratory (SESL) in Houston, specifically in Chamber A in building 32. The prototypes tested to date have undergone rigorous evaluations to ensure the technology can withstand the harsh lunar environment and deploy the solar array effectively on the lunar surface. 
      The Honeybee Robotics prototype during lunar VSAT (Vertical Solar Array Technology) testing inside Chamber A at NASA’s Johnson Space Center in Houston.NASA/David DeHoyos The Astrobotic Technology prototype during lunar VSAT testing inside Chamber A at Johnson Space Center. NASA/James Blair In the summer of 2024, both Honeybee Robotics, a Blue Origin company from Altadena, California and Astrobotic Technology from Pittsburgh, Pennsylvania put their solar array concepts to the test in Chamber A. 

      Each company has engineered a unique solution to design the arrays to withstand the harsh lunar environment and extreme temperature swings. The data collected in the SESL will support refinement of requirements and the designs for future technological advancements with the goal to deploy at least one of the systems near the Moon’s South Pole. 

      The contracts for this initiative are part of NASA’s VSAT (Vertical Solar Array Technology) project, aiming to support the agency’s long-term lunar surface operations. VSAT is under the Space Technology Mission Directorate Game Changing Development program and led by the Langley Research Center in Hampton, Virginia, in collaboration with Glenn Research Center in Cleveland.  

      “We foresee the Moon as a hub for manufacturing satellites and hardware, leveraging the energy required to launch from the lunar surface,” said Jim Burgess, VSAT lead systems engineer. “This vision could revolutionize space exploration and industry.” 

      Built in 1965, the SESL initially supported the Gemini and Apollo programs but was adapted to conduct testing for other missions like the Space Shuttle Program and Mars rovers, as well as validate the design of the James Webb Space Telescope. Today, it continues to evolve to support future Artemis exploration. 

      Johnson’s Front Door initiative aims to solve the challenges of space exploration by opening opportunities to the public and bringing together bold and innovative ideas to explore new destinations. 

      “The SESL is just one of the hundreds of unique capabilities that we have here at Johnson,” said Molly Bannon, Johnson’s Innovation and Strategy specialist. “The Front Door provides a clear understanding of all our capabilities and services, the ways in which our partners can access them, and how to contact us. We know that we can go further together with all our partners across the entire space ecosystem if we bring everyone together as the hub of human spaceflight.” 

      Chamber A remains as one of the largest thermal vacuum chambers of its kind, with the unique capability to provide extreme deep space temperature conditions down to as low as 20 Kelvin. This allows engineers to gather essential data on how technologies react to the Moon’s severe conditions, particularly during the frigid lunar night where the systems may need to survive for 96 hours in darkness. 

      “Testing these prototypes will help ensure more safe and reliable space mission technologies,” said Chuck Taylor, VSAT project manager. “The goal is to create a self-sustaining system that can support lunar exploration and beyond, making our presence on the Moon not just feasible but sustainable.” 

      The power generation systems must be self-aware to manage outages and ensure survival on the lunar surface. These systems will need to communicate with habitats and rovers and provide continuous power and recharging as needed. They must also deploy on a curved surface, extend 32 feet high to reach sunlight, and retract for possible relocation.  

      “Generating power on the Moon involves numerous lessons and constant learning,” said Taylor. “While this might seem like a technical challenge, it’s an exciting frontier that combines known technologies with innovative solutions to navigate lunar conditions and build a dynamic and robust energy network on the Moon.”

      Watch the video below to explore the capabilities and scientific work enabled by the thermal testing conducted in Johnson’s Chamber A facility.
      View the full article
  • Check out these Videos

×
×
  • Create New...