Jump to content

Recommended Posts

  • Publishers
Posted
Saturn and its rings appear to glow against the darkness of space. At right and at middle bottom, two small dots can be seen: they are two of Saturn's moons - Mimas and Enceladus, respectively. Saturn itself takes on a reddish tint in its northern hemisphere and blue at its bottom. The planet's concentric rings are an icy white.
NASA, ESA, A. Simon (Goddard Space Flight Center), M.H. Wong (University of California, Berkeley), and the OPAL Team

NASA’s Hubble Space Telescope captured this image of Saturn and its colossal rings on July 4, 2020, during summer in the gas giant’s northern hemisphere. Two of Saturn’s icy moons are also clearly visible: Mimas at right, and Enceladus at bottom. 

The light reddish haze over the northern hemisphere seen in this color composite could be due to heating from increased sunlight, which could either change the atmospheric circulation or remove ices from aerosols in the atmosphere. Another theory is that the increased sunlight in the summer months is changing the amounts of photochemical haze produced. Conversely, the just-now-visible south pole has a blue hue, reflecting changes in Saturn’s winter hemisphere.

This image was taken as part of the Outer Planets Atmospheres Legacy (OPAL) project. OPAL is helping scientists understand the atmospheric dynamics and evolution of our solar system’s gas giant planets. In Saturn’s case, astronomers continue tracking shifting weather patterns and storms.

Image credit: NASA, ESA, A. Simon (Goddard Space Flight Center), M.H. Wong (University of California, Berkeley), and the OPAL Team

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A Satellite for Optimal Control and Imaging (SOC-i) CubeSat awaits integration at Firefly’s Payload Processing Facility at Vandenberg Space Force Base, California on Thursday, June 6, 2024. SOC-i, along with several other CubeSats, will launch to space on an Alpha rocket during NASA’s Educational Launch of Nanosatellites (ELaNa) 43 mission as part of the agency’s CubeSat Launch Initiative and Firefly’s Venture-Class Launch Services Demonstration 2 contract.NASA NASA is collaborating with the U.S. Air Force and U.S. Space Force to offer a set of hands-on learning engagements that will help higher education institutions, faculty, and students learn more about what it takes to build small satellites and enhance the potential to be selected for flight opportunities. 
      Teams selected for the University Nanosatellite Program Mission Concept 2025 Summer Series will receive systems engineering training that prepares them for the industrial workforce while developing small satellite expertise at U.S. universities. The program, which runs from May through August 2025, also enhances students’ potential to be selected for flights to space as part of NASA’s CSLI (CubeSat Launch Initiative) and the U.S. Air Force University Nanosatellite Program. 
      “Part of NASA’s mission is to inspire the next generation,” said Liam Cheney, CSLI mission manager at the agency’s Kennedy Space Center in Florida. “The CubeSat Launch Initiative is providing opportunities for students and educators to experiment with technology and send their missions to space.”
      The program allows faculty and students to form teams for the summer program without using university resources, and includes travel funding for kickoff, final event, and any in-person reviews, among other benefits. 
      All U.S colleges and universities are eligible, and teams at minority-serving institutions and Historically Black Colleges and Universities are strongly encouraged to apply for the Mission Concepts 2025 Summer Series in accordance with the criteria in the request for proposal. The solicitation opened on Jan. 6, with a deadline to apply by Monday, Feb. 3. 
      The agency’s collaboration with the U.S. Air Force and U.S. Space Force helps broaden access to space and strengthen the capabilities and knowledge of higher education institutions, faculty, and students. 
      NASA’s CubeSat Launch Initiative provides opportunities for CubeSats built by U.S. educational institutions, and non-profit organizations, including informal educational institutions such as museums and science centers to fly on upcoming launches. Through innovative technology partnerships NASA provides these CubeSat developers a low-cost pathway to conduct scientific investigations and technology demonstrations in space, thus enabling students, teachers, and faculty to obtain hands-on flight hardware design, development, and build experience.
      For more information, visit: Solicitation – UNP

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This bar graph shows GISTEMP summer global temperature anomalies for 2023 (shown in yellow) and 2024 (shown in red). June through August is considered meteorological summer in the Northern Hemisphere. The white lines indicate the range of estimated temperatures. The warmer-than-usual summers continue a long-term trend of warming, driven primarily by human-caused greenhouse gas emissions. NASA/Peter Jacobs The agency also shared new state-of-the-art datasets that allow scientists to track Earth’s temperature for any month and region going back to 1880 with greater certainty.

      August 2024 set a new monthly temperature record, capping Earth’s hottest summer since global records began in 1880, according to scientists at NASA’s Goddard Institute for Space Studies (GISS) in New York. The announcement comes as a new analysis upholds confidence in the agency’s nearly 145-year-old temperature record.
      June, July, and August 2024 combined were about 0.2 degrees Fahrenheit (about 0.1 degrees Celsius) warmer globally than any other summer in NASA’s record — narrowly topping the record just set in 2023. Summer of 2024 was 2.25 F (1.25 C) warmer than the average summer between 1951 and 1980, and August alone was 2.34 F (1.3 C) warmer than average. June through August is considered meteorological summer in the Northern Hemisphere.
      “Data from multiple record-keepers show that the warming of the past two years may be neck and neck, but it is well above anything seen in years prior, including strong El Niño years,” said Gavin Schmidt, director of GISS. “This is a clear indication of the ongoing human-driven warming of the climate.”
      NASA assembles its temperature record, known as the GISS Surface Temperature Analysis (GISTEMP), from surface air temperature data acquired by tens of thousands of meteorological stations, as well as sea surface temperatures from ship- and buoy-based instruments. It also includes measurements from Antarctica. Analytical methods consider the varied spacing of temperature stations around the globe and urban heating effects that could skew the calculations.
      The GISTEMP analysis calculates temperature anomalies rather than absolute temperature. A temperature anomaly shows how far the temperature has departed from the 1951 to 1980 base average.
      New assessment of temperature record
      The summer record comes as new research from scientists at the Colorado School of Mines, National Science Foundation, the National Atmospheric and Oceanic Administration (NOAA), and NASA further increases confidence in the agency’s global and regional temperature data.
      “Our goal was to actually quantify how good of a temperature estimate we’re making for any given time or place,” said lead author Nathan Lenssen, a professor at the Colorado School of Mines and project scientist at the National Center for Atmospheric Research (NCAR).
      This visualization of GISTEMP monthly temperatures with the seasonal cycle derived from the Global Modeling and Assimilation Office’s MERRA-2 model compares 2023 (in red) and 2024 (in purple), with a transparent ribbon around each indicating the confidence intervals from the new GISTEMP uncertainty calculation. The white lines show monthly temperatures from the years 1961 to 2022. June, July, and August 2024 combined were about 0.2 degrees Fahrenheit (about 0.1 degrees Celsius) warmer globally than any other summer in NASA’s record — narrowly topping the record set in 2023.NASA/Peter Jacobs/Katy Mersmann The researchers affirmed that GISTEMP is correctly capturing rising surface temperatures on our planet and that Earth’s global temperature increase since the late 19th century — summer 2024 was about 2.7 F (1.51 C) warmer than the late 1800s — cannot be explained by any uncertainty or error in the data.
      The authors built on previous work showing that NASA’s estimate of global mean temperature rise is likely accurate to within a tenth of a degree Fahrenheit in recent decades. For their latest analysis, Lenssen and colleagues examined the data for individual regions and for every month going back to 1880.  
      Estimating the unknown
      Lenssen and colleagues provided a rigorous accounting of statistical uncertainty within the GISTEMP record. Uncertainty in science is important to understand because we cannot take measurements everywhere. Knowing the strengths and limitations of observations helps scientists assess if they’re really seeing a shift or change in the world.
      The study confirmed that one of the most significant sources of uncertainty in the GISTEMP record is localized changes around meteorological stations. For example, a previously rural station may report higher temperatures as asphalt and other heat-trapping urban surfaces develop around it. Spatial gaps between stations also contribute some uncertainty in the record. GISTEMP accounts for these gaps using estimates from the closest stations.
      Previously, scientists using GISTEMP estimated historical temperatures using what’s known in statistics as a confidence interval — a range of values around a measurement, often read as a specific temperature plus or minus a few fractions of degrees. The new approach uses a method known as a statistical ensemble: a spread of the 200 most probable values. While a confidence interval represents a level of certainty around a single data point, an ensemble tries to capture the whole range of possibilities.
      The distinction between the two methods is meaningful to scientists tracking how temperatures have changed, especially where there are spatial gaps. For example: Say GISTEMP contains thermometer readings from Denver in July 1900, and a researcher needs to estimate what conditions were 100 miles away. Instead of reporting the Denver temperature plus or minus a few degrees, the researcher can analyze scores of equally probable values for southern Colorado and communicate the uncertainty in their results.
      What does this mean for recent heat rankings?
      Every year, NASA scientists use GISTEMP to provide an annual global temperature update, with 2023 ranking as the hottest year to date.
      Other researchers affirmed this finding, including NOAA and the European Union’s Copernicus Climate Change Service. These institutions employ different, independent methods to assess Earth’s temperature. Copernicus, for instance, uses an advanced computer-generated approach known as reanalysis. 
      The records remain in broad agreement but can differ in some specific findings. Copernicus determined that July 2023 was Earth’s hottest month on record, for example, while NASA found July 2024 had a narrow edge. The new ensemble analysis has now shown that the difference between the two months is smaller than the uncertainties in the data. In other words, they are effectively tied for hottest. Within the larger historical record the new ensemble estimates for summer 2024 were likely 2.52-2.86 degrees F (1.40-1.59 degrees C) warmer than the late 19th century, while 2023 was likely 2.34-2.68 degrees F (1.30-1.49 degrees C) warmer.

      Read More Share
      Details
      Last Updated Sep 11, 2024 LocationGISS Related Terms
      Earth Climate Change Goddard Institute for Space Studies Goddard Space Flight Center Explore More
      6 min read Childhood Snow Days Transformed Linette Boisvert into a Sea Ice Scientist
      Article 1 day ago 7 min read Kyle Helson Finds EXCITE-ment in Exoplanet Exploration
      Article 1 day ago 5 min read NASA’s Hubble, Chandra Find Supermassive Black Hole Duo
      Like two Sumo wrestlers squaring off, the closest confirmed pair of supermassive black holes have…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Learn Home NASA Summer Camp Inspires… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   2 min read
      NASA Summer Camp Inspires Future Climate Leaders
      From July 15-19, 2024, the Coastal Equity and Resilience Hub at the Georgia Institute of Technology collaborated with the University of Georgia (UGA) Marine Extension and Georgia Sea Grant to host a week-long NASA Sea Level Changemakers Summer Camp. The camp introduced 14 rising 7th-8th graders to how coastal areas are changing due to sea level rise. Set at the UGA Marine Education Center and Aquarium on Skidaway Island, the camp offered students hands-on activities and outdoor educational experiences, where they analyzed real data collected by NASA scientists and learned about community adaptations to flooding. Students interacted with experts from NASA’s Jet Propulsion Laboratory, UGA, and Georgia Tech, gaining insights into satellite observations, green infrastructure, environmental sensors, and careers related to sea level rise. The camp also included a visit to the Pin Point Heritage Museum, where students engaged with leaders from the historic Gullah Geechee community of Pin Point. The camp concluded with a boat trip to Wassaw Island, where students observed the effects of sea level rise on an undeveloped barrier island and compared these observations with earlier findings from urban environments. Funding from the NASA’s Science Activation Program and its Sea Level Education, Awareness, and Literacy (SEAL) team ensured that the camp was accessible to all students, eliminating financial barriers for groups traditionally underrepresented in STEM education.
      “This investment from NASA has provided an amazing opportunity for youth in coastal Georgia to utilize NASA data and resources on a critical issue affecting their communities,” said Jill Gambill, executive director of the Coastal Equity and Resilience (CEAR) Hub at Georgia Tech. “They have more confidence now in their knowledge of sea level rise and potential solutions.”
      The Sea Level Education, Awareness, and Literacy (SEAL) team is supported by NASA under cooperative agreement award number NNH21ZDA001N-SCIACT and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Participants of the 2024 NASA Sea Level Changemakers Summer Camp in Savannah, GA Share








      Details
      Last Updated Sep 06, 2024 Editor NASA Science Editorial Team Location Jet Propulsion Laboratory Related Terms
      Earth Science NOAA (National Oceanic and Atmospheric Administration) Opportunities For Students to Get Involved Science Activation Sea Level Rise Explore More
      2 min read Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics


      Article


      2 days ago
      2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects


      Article


      3 days ago
      2 min read Co-creating authentic STEM learning experiences with Latino communities


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      4 Min Read The Summer Triangle’s Hidden Treasures
      The ‘Dumbbell nebula,’ also known as Messier 27, pumps out infrared light in this image from NASA’s Spitzer Space Telescope. Planetary nebulae are now known to be the remains of stars that once looked a lot like our sun. Credits:
      NASA/JPL-Caltech/Harvard-Smithsonian CfA August skies bring the lovely Summer Triangle asterism into prime position after nightfall for observers in the Northern Hemisphere. Its position high in the sky may make it difficult for some to observe its member stars comfortably, since looking straight up while standing can be hard on one’s neck! While that isn’t much of a problem for those that just want to quickly spot its brightest stars and member constellations, this difficulty can prevent folks from seeing some of the lesser known and dimmer star patterns scattered around its informal borders. The solution? Lie down on the ground with a comfortable blanket or mat or grab a lawn or gravity chair and sit luxuriously while facing up. You’ll quickly spot the major constellations about the Summer Triangle’s three corner stars: Lyra with bright star Vega, Cygnus with brilliant star Deneb, and Aquila with its blazing star, Altair. As you get comfortable and your eyes adjust, you’ll soon find yourself able to spot a few constellations hidden in plain sight in the region around the Summer Triangle: Vulpecula the Fox, Sagitta the Arrow, and Delphinus the Dolphin! You could call these the Summer Triangle’s “hidden treasures” – and they are hidden in plain sight for those that know where to look!
      Mid-August offers views of the Summer Triangle with stars Deneb, Vega and Altair in the constellations Cygnus, Lyra, Aquila respectively. Constellations Vulpecula, Sagitta, and Delphinus are also visible, along with some of jewels – namely Messier 27, Messier 71, Caldwell 42 and Caldwell 47. Stellarium Web Vulpecula the Fox is located near the middle of the Summer Triangle, and is relatively small, like its namesake. Despite its size, it features the largest planetary nebula in our skies: M27, aka the Dumbbell Nebula! It’s visible in binoculars as a fuzzy “star” and when seen through telescopes, its distinctive shape can be observed more readily – especially with larger telescopes. Planetary nebulae, named such because their round fuzzy appearances were initially thought to resemble the disc of a planet by early telescopic observers, form when stars similar to our Sun begin to die. The star will expand into a massive red giant, and its gases drift off into space, forming a nebula. Eventually the star collapses into a white dwarf – as seen with M27 – and eventually the colorful shell of gases will dissipate throughout the galaxy, leaving behind a solitary, tiny, dense, white dwarf star. You are getting a peek into our Sun’s far-distant future when you observe this object!
      This spectacular NASA/ESA Hubble Space Telescope image shows a bright scattering of stars in the small constellation of Sagitta (the Arrow). This is the centre of the globular cluster Messier 71, a great ball of ancient stars on the edge of our galaxy around 13 000 light-years from Earth. M71 is around 27 light-years across. Globular clusters are like galactic suburbs, pockets of stars that exist on the edge of major galaxies. These clusters are tightly bound together by their gravitational attraction, hence their spherical shape and their name: globulus means “little sphere” in Latin. Around 150 such globular clusters are known to exist around our Milky Way, each one of them containing several hundred thousand stars. Messier 71 has been known for a long time, having been first spotted in the mid eighteenth century by Swiss astronomer Jean-Philippe de Cheseaux. Cheseaux discovered a number of nebulae in his career, and also spent much time studying religion: one posthumously published work attempted to derive the exact date of Christ’s crucifixion from astronomical events noted in the Bible. Despite being a familiar object, Messier 71’s precise nature was disputed until recently. Was it simply an open cluster, a loosely bound group of stars? This was for many years the dominant view. But in the 1970s, astronomers came to the view that it is in fact a relatively sparse globular cluster. The stars in Messier 71, as is usual in such clusters, are relatively old, at around 9 to 10 billion years, and consequently are low in elements other than hydrogen and helium. This picture was created from images taken with the Wide Field Channel of the Advanced Camera for Surveys on Hubble. It is a combination of images taken through yellow (F606W — coloured blue) and near-infrared (F814W — coloured red) filters. The exposure times were 304 s and 324 s respectively. The field of view is about 3.4 arcminutes across. ESA/Hubble and NASA Sagitta the Arrow is even smaller than Vulpecula – it’s the third smallest constellation in the sky! Located between the stars of Vulpecula and Aquila the Eagle, Sagitta’s stars resemble its namesake arrow. It too contains an interesting deep-sky object: M71, an unusually small and young globular cluster whose lack of a strong central core has long confused and intrigued astronomers. Your own views very likely won’t be as sharp or close as this. However, this photo does show the cluster’s lack of a bright, concentrated core, which led astronomers until fairly recently to classify this unusual cluster as an “open cluster” rather than as a “globular cluster.” Studies in the 1970s proved it to be a globular cluster after all  – though an unusually young and small one! It’s visible in binoculars, and a larger telescope will enable you to separate its stars a bit more easily than most globulars; you’ll certainly see why it was thought to be an open cluster!
      Delicate Delphinus the Dolphin appears to dive in and out of the Milky Way near Aquilla and Sagitta! Many stargazers identify Delphinus as a herald of the fainter water constellations, rising in the east after sunset as fall approaches. The starry dolphin appears to leap out of the great celestial ocean, announcing the arrival of more wonderful sights later in the evening. With a large telescope and dark skies, you can pick out globular clusters Caldwell 42 and Caldwell 47.
      Want to hunt for more treasures? You’ll need a treasure map, and the Night Sky Network’s “Trip Around the Triangle” handout is the perfect guide for your quest!
      Originally posted by Dave Prosper: August 2022
      Last Updated by Kat Troche: April 2024
      View the full article
    • By NASA
      The summer months are usually a time for teachers to take a break from the classroom and enjoy some well-earned rest. But at NASA’s Johnson Space Center in Houston, two experienced educators dedicated their summer vacations to learning how to enrich their students’ science, technology, engineering, and mathematics (STEM) education and inspire them to achieve their dreams.

      Johnson’s Office of STEM Engagement (OSTEM) welcomed Jerry “Denise” Dunn and Shawnda Folsom as full-time interns for the summer. Both women came to Johnson through the Oklahoma Space Grant Consortium, which not only supports students pursuing STEM careers but also provides curriculum enhancement and professional development opportunities for educators. Dunn and Folsom were invited to become interns after completing STELLAR, the consortium’s yearlong mentorship program that immerses educators in hands-on STEM-based activities for classroom application.

      Denise Dunn (left) and Shawnda Folsom. For Dunn, a middle school special education teacher in the small town of Checotah, Oklahoma, participating in STELLAR opened several doors that ultimately led to her internship. Dunn works primarily with students who have severe and profound disabilities and is fiercely passionate about increasing their access to STEM education and opportunities.

      “If you look at the research, there’s been a big push for STEM for everyone except kids with disabilities. The number of people with disabilities in STEM-related fields hasn’t changed in a decade,” she said. “We need to promote that more.”

      Dunn suggested that she and her STELLAR colleagues support Challenge Air, a program that teaches children with disabilities about aviation and lets them co-pilot a plane. The STELLAR group set up activity tables at a Challenge Air event where kids could build rockets or make Moon craters and learn about space exploration. That experience inspired the Oklahoma Space Grant Consortium to create an annual STEM engagement event specifically for kids with disabilities and their families.

      Denise Dunn (left) helps a family build a foam rocket at a Challenge Air event.Image courtesy of Denise Dunn Dunn subsequently attended the Space Exploration Educators Conference where she connected with Tracy Minish, a former Johnson employee with more than 30 years of experience in the Space Shuttle Program and Mission Control Center who is also legally blind. Minish met virtually with Dunn’s students to encourage them to pursue their dreams, then invited her to Johnson to learn about the accommodations and support NASA provides to employees with disabilities. Dunn used what she learned to create a teacher workshop that shared practical strategies for STEM special education. These efforts and the connections she made at Johnson paved the way for her internship.

      “I want to know more about what NASA does to support its employees with disabilities. I also want to know more about those employees and their stories so that I can share that with my students,” she said. Dunn also appreciated connecting with Johnson’s No Boundaries Employee Resource Group because they have the power to provide representation for kids with disabilities.

      “Kids with disabilities are just natural problem solvers and they have unique perspectives, and they need to see their value,” she said. “And NASA – what a great place for them to see that.”

      For Folsom, an elementary-level science and social studies teacher for Velma-Alma Public Schools, the internship offer came at a time of personal and professional change. In addition to planning her upcoming wedding and a move, juggling her kids’ schedules, and pursuing a master’s degree in education, Folsom was also preparing to take on a new, school district-wide role. “I am ecstatic to take on a new challenge – building, implementing, and teaching a comprehensive STEM program for students from pre-kindergarten through 12th grade,” she said. She saw the internship as a chance to immerse herself in NASA’s work and bring new opportunities for STEM learning and engagement back to her students. “I was not aware of all of the student design challenges that NASA has, so I am super excited to share these and have future classes participate in them,” she said.
      Shawnda Folsom leads an Office of STEM Engagement (OSTEM) activity for youth during Bring Youth to Work Day at NASA’s Johnson Space Center in Houston. Image courtesy of Shawnda Folsom Folsom is also determined to see more NASA interns from her school district, which is extremely rural and qualifies for Title I support. “My goal is to shake the right hands and make the connections that will allow me to set my students up for their future, which hopefully will include an internship for many of them,” she said. “I want my ‘small town’ mindset students to realize how much talent and potential they each have. I want them to know they can do anything.” She noted that her own story – which involves a nontraditional career path and now, at 41, an internship – could help inspire her students.

      Together with their OSTEM mentors and teammates, Dunn and Folsom spent their summer creating hands-on activities for children who attended events like Johnson’s Bring Youth to Work Day and the Dorothy Vaughan Center in Honor of the Women of Apollo dedication. They prepared an aerodynamics lesson plan and STEM activity for the MLB Players STEM League Global Championship in July, supported and participated in NASA-led professional development programs for teachers, and worked on a new camp experience resource to complement OSTEM’s ‘First Woman’ camp experience.
      Denise Dunn and Shawnda Folsom present a remote sensing activity for local scouts who attended the Dorothy Vaughan Center in Honor of the Women of Apollo event at Johnson Space Center on July 19, 2024. NASA/Robert Markowitz Both women look forward to returning to their schools later this month and to sharing what they learned with their students.

      “I want to expose my students to higher-level thinking and new STEM challenges,” said Folsom. “I want them to have those ‘a ha’ moments that will possibly launch their lives down a path they never fathomed could happen.”

      “This internship has made me more aware of opportunities, not only to continue to advocate for my students, but for myself,” Dunn said. “Keep going. Keep dreaming.”
      View the full article
  • Check out these Videos

×
×
  • Create New...