Jump to content

NASA’s Webb Images Cold Exoplanet 12 Light-Years Away


NASA

Recommended Posts

  • Publishers
6 Min Read

NASA’s Webb Images Cold Exoplanet 12 Light-Years Away

This image shows the exoplanet Epsilon Indi Ab. The image is mostly black, with blue scale-like features apparent in the central region of the image. At the center of the image, there is a black circle, and in the center, a symbol representing a star. This black circle blocks the light from the host star. To the lower left of the circle is a fuzzy bright orange circle, which is the exoplanet.
This image of the gas-giant exoplanet Epsilon Indi Ab was taken with the coronagraph on NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument). A star symbol marks the location of the host star Epsilon Indi A, whose light has been blocked by the coronagraph, resulting in the dark circle marked with a dashed white line (full image below)

An international team of astronomers using NASA’s James Webb Space Telescope has directly imaged an exoplanet roughly 12 light-years from Earth. The planet, Epsilon Indi Ab, is one of the coldest exoplanets observed to date.

The planet is several times the mass of Jupiter and orbits the K-type star Epsilon Indi A (Eps Ind A), which is around the age of our Sun, but slightly cooler. The team observed Epsilon Indi Ab using the coronagraph on Webb’s MIRI (Mid-Infrared Instrument). Only a few tens of exoplanets have been directly imaged previously by space- and ground-based observatories.

Image A: Exoplanet Epsilon Indi Ab

This image shows the exoplanet Epsilon Indi Ab. The image is mostly black, with blue scale-like features apparent in the central region of the image. At the center of the image, there is a black circle, and in the center, a symbol representing a star. This black circle blocks the light from the host star. To the lower left of the circle is a fuzzy bright orange circle, which is the exoplanet.
This image of the gas-giant exoplanet Epsilon Indi Ab was taken with the coronagraph on NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument). A star symbol marks the location of the host star Epsilon Indi A, whose light has been blocked by the coronagraph, resulting in the dark circle marked with a dashed white line. Epsilon Indi Ab is one of the coldest exoplanets ever directly imaged. Light at 10.6 microns was assigned the color blue, while light at 15.5 microns was assigned the color orange. MIRI did not resolve the planet, which is a point source.

“Our prior observations of this system have been more indirect measurements of the star, which actually allowed us to see ahead of time that there was likely a giant planet in this system tugging on the star,” said team member Caroline Morley of the University of Texas at Austin. “That’s why our team chose this system to observe first with Webb.”

“This discovery is exciting because the planet is quite similar to Jupiter — it is a little warmer and is more massive, but is more similar to Jupiter than any other planet that has been imaged so far,” added lead author Elisabeth Matthews of the Max Planck Institute for Astronomy in Germany.

Previously imaged exoplanets tend to be the youngest, hottest exoplanets that are still radiating much of the energy from when they first formed. As planets cool and contract over their lifetime, they become significantly fainter and therefore harder to image.

A Solar System Analog

“Cold planets are very faint, and most of their emission is in the mid-infrared,” explained Matthews. “Webb is ideally suited to conduct mid-infrared imaging, which is extremely hard to do from the ground. We also needed good spatial resolution to separate the planet and the star in our images, and the large Webb mirror is extremely helpful in this aspect.”

Epsilon Indi Ab is one of the coldest exoplanets to be directly detected, with an estimated temperature of 35 degrees Fahrenheit (2 degrees Celsius) — colder than any other imaged planet beyond our solar system, and colder than all but one free-floating brown dwarf. The planet is only around 180 degrees Fahrenheit (100 degrees Celsius) warmer than gas giants in our solar system. This provides a rare opportunity for astronomers to study the atmospheric composition of true solar system analogs.

“Astronomers have been imagining planets in this system for decades; fictional planets orbiting Epsilon Indi have been the sites of Star Trek episodes, novels, and video games like Halo,” added Morley. “It’s exciting to actually see a planet there ourselves, and begin to measure its properties.”

Not Quite As Predicted

Epsilon Indi Ab is the twelfth closest exoplanet to Earth known to date and the closest planet more massive than Jupiter. The science team chose to study Eps Ind A because the system showed hints of a possible planetary body using a technique called radial velocity, which measures the back-and-forth wobbles of the host star along our line of sight.

“While we expected to image a planet in this system, because there were radial velocity indications of its presence, the planet we found isn’t what we had predicted,” shared Matthews. “It’s about twice as massive, a little farther from its star, and has a different orbit than we expected. The cause of this discrepancy remains an open question. The atmosphere of the planet also appears to be a little different than the model predictions. So far we only have a few photometric measurements of the atmosphere, meaning that it is hard to draw conclusions, but the planet is fainter than expected at shorter wavelengths.”

The team believes this may mean there is significant methane, carbon monoxide, and carbon dioxide in the planet’s atmosphere that are absorbing the shorter wavelengths of light. It might also suggest a very cloudy atmosphere.

The direct imaging of exoplanets is particularly valuable for characterization. Scientists can directly collect light from the observed planet and compare its brightness at different wavelengths. So far, the science team has only detected Epsilon Indi Ab at a few wavelengths, but they hope to revisit the planet with Webb to conduct both photometric and spectroscopic observations in the future. They also hope to detect other similar planets with Webb to find possible trends about their atmospheres and how these objects form.

NASA’s upcoming Nancy Grace Roman Space Telescope will use a coronagraph to demonstrate direct imaging technology by photographing Jupiter-like worlds orbiting Sun-like stars – something that has never been done before. These results will pave the way for future missions to study worlds that are even more Earth-like.

These results were taken with Webb’s Cycle 1 General Observer program 2243 and have been published in the journal Nature.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

Downloads

Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

View/Download the research results published in the journal Nature.

Media Contacts

Laura Betz – laura.e.betz@nasa.gov, Rob Gutrorob.gutro@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Christine Pulliamcpulliam@stsci.edu , Hannah Braun hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Animation: Eclipse/Coronagraph Animation

Webb Blog: NASA’s Webb Takes Its First-Ever Direct Image of Distant World

Webb Blog: How Webb’s Coronagraphs Reveal Exoplanets in the Infrared

Article: Webb’s Impact on Exoplanet Research

NASA’s Exoplanet Website

More Webb News

More Webb Images

Webb Mission Page

What is a exoplanet?

What is the Webb Telescope?

SpacePlace for Kids

En Español

Para Niños : Qué es una exoplaneta?

Ciencia de la NASA

NASA en español 

Space Place para niños

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Week in images: 18-22 November 2024
      Discover our week through the lens
      View the full article
    • By European Space Agency
      Week in images: 11-15 November 2024
      Discover our week through the lens
      View the full article
    • By European Space Agency
      Week in images: 04-08 November 2024
      Discover our week through the lens
      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble, Webb… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   6 Min Read NASA’s Hubble, Webb Probe Surprisingly Smooth Disk Around Vega
      Teams of astronomers used the combined power of NASA’s Hubble and James Webb space telescopes to revisit the legendary Vega disk. Credits:
      NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona) In the 1997 movie “Contact,” adapted from Carl Sagan’s 1985 novel, the lead character scientist Ellie Arroway (played by actor Jodi Foster) takes a space-alien-built wormhole ride to the star Vega. She emerges inside a snowstorm of debris encircling the star — but no obvious planets are visible.
      It looks like the filmmakers got it right.
      A team of astronomers at the University of Arizona, Tucson used NASA’s Hubble and James Webb space telescopes for an unprecedented in-depth look at the nearly 100-billion-mile-diameter debris disk encircling Vega. “Between the Hubble and Webb telescopes, you get this very clear view of Vega. It’s a mysterious system because it’s unlike other circumstellar disks we’ve looked at,” said Andras Gáspár of the University of Arizona, a member of the research team. “The Vega disk is smooth, ridiculously smooth.”
      The big surprise to the research team is that there is no obvious evidence for one or more large planets plowing through the face-on disk like snow tractors. “It’s making us rethink the range and variety among exoplanet systems,” said Kate Su of the University of Arizona, lead author of the paper presenting the Webb findings.
      [left] A Hubble Space Telescope false-color view of a 100-billion-mile-wide disk of dust around the summer star Vega. Hubble detects reflected light from dust that is the size of smoke particles largely in a halo on the periphery of the disk. The disk is very smooth, with no evidence of embedded large planets. The black spot at the center blocks out the bright glow of the hot young star.
      [right] The James Webb Space Telescope resolves the glow of warm dust in a disk halo, at 23 billion miles out. The outer disk (analogous to the solar system’s Kuiper Belt) extends from 7 billion miles to 15 billion miles. The inner disk extends from the inner edge of the outer disk down to close proximity to the star. There is a notable dip in surface brightness of the inner disk from approximately 3.7 to 7.2 billion miles. The black spot at the center is due to lack of data from saturation. NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona)
      Download this image

      Webb sees the infrared glow from a disk of particles the size of sand swirling around the sizzling blue-white star that is 40 times brighter than our Sun. Hubble captures an outer halo of this disk, with particles no bigger than the consistency of smoke that are reflecting starlight.
      The distribution of dust in the Vega debris disk is layered because the pressure of starlight pushes out the smaller grains faster than larger grains. “Different types of physics will locate different-sized particles at different locations,” said Schuyler Wolff of the University of Arizona team, lead author of the paper presenting the Hubble findings. “The fact that we’re seeing dust particle sizes sorted out can help us understand the underlying dynamics in circumstellar disks.”
      The Vega disk does have a subtle gap, around 60 AU (astronomical units) from the star (twice the distance of Neptune from the Sun), but otherwise is very smooth all the way in until it is lost in the glare of the star. This shows that there are no planets down at least to Neptune-mass circulating in large orbits, as in our solar system, say the researchers.
      Hubble acquired this image of the circumstellar disk around the star Vega using the Space Telescope Imaging Spectrograph (STIS). NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona)
      Download this image

      “We’re seeing in detail how much variety there is among circumstellar disks, and how that variety is tied into the underlying planetary systems. We’re finding a lot out about the planetary systems — even when we can’t see what might be hidden planets,” added Su. “There’s still a lot of unknowns in the planet-formation process, and I think these new observations of Vega are going to help constrain models of planet formation.”
      Disk Diversity
      Newly forming stars accrete material from a disk of dust and gas that is the flattened remnant of the cloud from which they are forming. In the mid-1990s Hubble found disks around many newly forming stars. The disks are likely sites of planet formation, migration, and sometimes destruction. Fully matured stars like Vega have dusty disks enriched by ongoing “bumper car” collisions among orbiting asteroids and debris from evaporating comets. These are primordial bodies that can survive up to the present 450-million-year age of Vega (our Sun is approximately ten times older than Vega). Dust within our solar system (seen as the Zodiacal light) is also replenished by minor bodies ejecting dust at a rate of about 10 tons per second. This dust is shoved around by planets. This provides a strategy for detecting planets around other stars without seeing them directly – just by witnessing the effects they have on the dust.
      “Vega continues to be unusual,” said Wolff. “The architecture of the Vega system is markedly different from our own solar system where giant planets like Jupiter and Saturn are keeping the dust from spreading the way it does with Vega.”
      Webb acquired this image of the circumstellar disk around the star Vega using the Mid-Infrared Instrument (MIRI). NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona)
      Download this image

      For comparison, there is a nearby star, Fomalhaut, which is about the same distance, age and temperature as Vega. But Fomalhaut’s circumstellar architecture is greatly different from Vega’s. Fomalhaut has three nested debris belts.
      Planets are suggested as shepherding bodies around Fomalhaut that gravitationally constrict the dust into rings, though no planets have been positively identified yet. “Given the physical similarity between the stars of Vega and Fomalhaut, why does Fomalhaut seem to have been able to form planets and Vega didn’t?” said team member George Rieke of the University of Arizona, a member of the research team. “What’s the difference? Did the circumstellar environment, or the star itself, create that difference? What’s puzzling is that the same physics is at work in both,” added Wolff.
      First Clue to Possible Planetary Construction Yards
      Located in the summer constellation Lyra, Vega is one of the brightest stars in the northern sky. Vega is legendary because it offered the first evidence for material orbiting a star — presumably the stuff for making planets — as potential abodes of life. This was first hypothesized by Immanuel Kant in 1775. But it took over 200 years before the first observational evidence was collected in 1984. A puzzling excess of infrared light from warm dust was detected by NASA’s IRAS (Infrared Astronomy Satellite). It was interpreted as a shell or disk of dust extending twice the orbital radius of Pluto from the star.
      In 2005, NASA’s infrared Spitzer Space Telescope mapped out a ring of dust around Vega. This was further confirmed by observations using submillimeter telescopes including Caltech’s Submillimeter Observatory on Mauna Kea, Hawaii, and also the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and ESA’s (European Space Agency’s) Herschel Space Telescope, but none of these telescopes could see much detail. “The Hubble and Webb observations together provide so much more detail that they are telling us something completely new about the Vega system that nobody knew before,” said Rieke.
      Two papers (Wolff et al. and Su et. al.) from the Arizona team will be published in The Astrophysical Journal.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Explore More:

      Finding Planetary Construction Zones


      The science paper by Schuyler Wolff et al., PDF (3.24 MB)


      The science paper by Kate Su et al., PDF (2.10 MB)

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Facebook logo @NASAWebb @NASAWebb Instagram logo @NASAWebb Media Contacts:
      Claire Andreoli (claire.andreoli@nasa.gov), Laura Betz (laura.e.betz@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Ray Villard, Christine Pulliam
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Nov 01, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Goddard Space Flight Center Hubble Space Telescope James Webb Space Telescope (JWST) Stars Keep Exploring Discover More Topics From Hubble and Webb
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      James Webb Space Telescope


      Space Telescope


      Hubble vs. Webb



      Hubble Focus: Strange New Worlds


      NASA’s Hubble Space Telescope team has released a new edition in the Hubble Focus e-book series, called “Hubble Focus: Strange…

      View the full article
    • By European Space Agency
      Stare deeply at these galaxies. They appear as if blood is pumping through the top of a flesh-free face. The long, ghastly ‘stare’ of their searing eye-like cores shines out into the supreme cosmic darkness.
      View the full article
  • Check out these Videos

×
×
  • Create New...