Jump to content

45 Years Ago: Space Shuttle Enterprise Completes Launch Pad Checkout


NASA

Recommended Posts

  • Publishers

On July 23, 1979, space shuttle Enterprise completed its time as a pathfinder vehicle at Launch Pad 39A at NASA’s Kennedy Space Center (KSC) in Florida. Workers towed it back to the Vehicle Assembly Building (VAB). During its four-month stay at KSC, Enterprise validated procedures for the assembly of the space shuttle stack and interfaces at the launch pad. The tests proved valuable in preparing space  shuttle Columbia for its first orbital mission in 1981. Earlier, Enterprise proved the flight worthiness of the shuttle during atmospheric tests and certified the vehicle’s structure to handle launch loads. Later, Enterprise supported the Challenger and Columbia accident investigations. Following a restoration, Enterprise went on public display, first near Washington, D.C., and then in New York City where it currently resides.

NASA Administrator James C. Fletcher, left, poses with several cast members and creator of the TV series “Star Trek” at Enterprise’s rollout Enterprise moments after release from the back of the Shuttle Carrier Aircraft during the first Approach and Landing Test free flight At NASA’s Marshall Space Flight Center in Huntsville, Alabama, for vibration tests, a shuttle orbiter joins an External Tank and twin Solid Rocket Boosters for the first time
Left: NASA Administrator James C. Fletcher, left, poses with several cast members and creator of the TV series “Star Trek” at Enterprise’s rollout. Middle: Enterprise moments after release from the back of the Shuttle Carrier Aircraft during the first Approach and Landing Test free flight. Right: At NASA’s Marshall Space Flight Center in Huntsville, Alabama, for vibration tests, a shuttle orbiter joins an External Tank and twin Solid Rocket Boosters for the first time.

On Jan. 5, 1972, President Richard M. Nixon directed NASA to build the reusable space shuttle, formally called the Space Transportation System (STS). Manufacture of the first components of Orbital Vehicle-101 (OV-101) at the North American Rockwell Corporation’s plant in Downey, California, began on June 4, 1974. This first vehicle, designed for ground and atmospheric flight tests, received the name Enterprise, following a dedicated write-in campaign by fans of the television science fiction series “Star Trek.” Enterprise rolled out of Rockwell’s Palmdale facility on Sept. 17, 1976. In January 1977, workers trucked Enterprise 36 miles overland from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base (AFB) in California, for the Approach and Landing Tests (ALT), a series of increasingly complex flights to evaluate the shuttle’s air worthiness. At Dryden, workers placed Enterprise on the back of the Shuttle Carrier Aircraft (SCA), a modified Boeing 747. The duo began taxi runs in February, followed by the first captive inactive flight later that month. The first captive active flight with a crew aboard the orbiter took place in June, and Enterprise made its first independent flight on Aug. 12. Four additional approach and landing flights completed the ALT program by October. In March 1978, Enterprise began its first cross-country trip from Edwards to the Redstone Arsenal’s airfield in Huntsville, Alabama. Workers trucked Enterprise to the adjacent NASA Marshall Space Flight Center where engineers for the first time mated it with an External Tank (ET) and inert Solid Rocket Boosters (SRB) in the Dynamic Structural Test Facility. For the next year, engineers conducted a series of vibration tests on the combined vehicle, simulating conditions expected during an actual launch.

Enterprise atop its Shuttle Carrier Aircraft (SCA) touches down on the runway at NASA’s Kennedy Space Center in Florida Workers remove Enterprise from the SCA in the Mate-Demate Device Workers tow Enterprise into the Vehicle Assembly Building
Left: Enterprise atop its Shuttle Carrier Aircraft (SCA) touches down on the runway at NASA’s Kennedy Space Center in Florida. Middle: Workers remove Enterprise from the SCA in the Mate-Demate Device. Right: Workers tow Enterprise into the Vehicle Assembly Building.

At NASA’s Kennedy Space Center in Florida, workers in the Vehicle Assembly Building prepare to lift Enterprise Enterprise in the vertical position Workers lower Enterprise for attachment to the External Tank and Solid Rocket Boosters
Left: At NASA’s Kennedy Space Center in Florida, workers in the Vehicle Assembly Building prepare to lift Enterprise. Middle: Enterprise in the vertical position. Right: Workers lower Enterprise for attachment to the External Tank and Solid Rocket Boosters.

Following the year-long series of tests at Marshall, on April 10, 1979, NASA ferried Enterprise atop its SCA to KSC. Workers at the SLF removed the orbiter from the back of the SCA in the Mate-Demate Device,and towed it into High Bay 3 of the VAB where on April 25 they completed attaching it to an ET and inert SRBs on a Mobile Launch Platform (MLP) repurposed from carrying Saturn rockets. These activities enabled verification of towing, assembly, and checkout procedures. Since the Apollo and Skylab programs, engineers had made many significant modifications to Launch Pads 39A and 39B to accommodate the space shuttle. Among these included the addition of a fixed launch tower, accommodations for payload handling, and a mobile service structure for access to the vehicle.

Enterprise exiting the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida Enterprise on its Mobile Launch Platform during the rollout to the pad Enterprise at Launch Pad 39A
Left: Enterprise exiting the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Middle: Enterprise on its Mobile Launch Platform during the rollout to the pad. Right: Enterprise at Launch Pad 39A.

Rollout of Enterprise from the VAB to Launch Pad 39A occurred on May 1, and its arrival marked the first time that a vehicle stood on that facility since the Skylab 1 space station launch in May 1973. The assembled vehicle including the MLP weighed about 11 million pounds. Technicians drove the stack atop the Crawler Transporter at varying speeds to determine the optimum velocity to minimize vibration stress on the vehicle. The 3.5-mile rollout took about eight hours to complete. Once at the pad, engineers used Enterprise to conduct fit checks and to validate launch pad procedures. During the critical countdown demonstration test, workers filled the ET with super-cold liquid hydrogen and liquid oxygen. The significant discovery that ice built up at the top of the ET during this process led to the addition of the gaseous oxygen vent hood (familiarly known as the “beanie cap”) to the launch pad facility and a procedure to retract it just a few minutes before liftoff. This prevented the dangerous buildup of ice during the countdown and ranks as perhaps one of Enterprise’s greatest contributions as a test vehicle during its time at the launch pad.

Engineer Richard W. Nygren poses in front of Enterprise at Launch Pad 39A with astronauts Richard H. Truly, John W. Young, Robert L. Crippen, and Joe H. Engle, the prime and backup crews assigned to STS-1, the first space shuttle mission Pilot’s eye view of the launch tower looking up through Enterprise’s forward windows Enterprise rolls back into the Vehicle Assembly Building Enterprise departs NASA’s Kennedy Space Center in Florida atop the Shuttle Carrier Aircraft
Left: Engineer Richard W. Nygren poses in front of Enterprise at Launch Pad 39A with astronauts Richard H. Truly, John W. Young, Robert L. Crippen, and Joe H. Engle, the prime and backup crews assigned to STS-1, the first space shuttle mission. Middle left: Pilot’s eye view of the launch tower looking up through Enterprise’s forward windows. Middle right: Enterprise rolls back into the Vehicle Assembly Building. Right: Enterprise departs NASA’s Kennedy Space Center in Florida atop the Shuttle Carrier Aircraft.

On July 23, after three months of fit checks and testing, workers rolled Enterprise back from Launch Pad 39A to the VAB’s High Bay 1. The activities conducted at the pad proved instrumental in paving the way for its sister ship Columbia to make its first launch in 1981. John Bell, who managed the activities at KSC said of the test program, “Overall, it was a very successful venture and well worth it.” Launch Pad 39A Site Manager John J. “Tip” Talone added, “Having [Enterprise] out here really saved the program a lot of time in getting things ready for [Columbia].” In the VAB, workers removed Enterprise from its ET on July 25 and towed it to the SLF on Aug. 3 where it awaited the arrival of the SCA. The ferry flight back to Dryden took place Aug. 10-16, making six stops along the way – Atlanta, St. Louis, Tulsa, Denver, Salt Lake City, and Vandenberg AFB in California. Up to 750,000 people came out to see the orbiter and SCA. Back at Dryden, workers demated Enterprise and on Oct. 30 trucked it back to the Palmdale plant where engineers removed computers and instruments to be refurbished and used in other orbiters then under construction. Previous plans to convert Enterprise into an orbital vehicle proved too costly and NASA abandoned the idea.

Enterprise as the backdrop for President Ronald W. Reagan welcomes home the STS-4 crew at NASA’s Dryden, now Armstrong, Flight Research Center in July 1982 Enterprise on display at the World’s Fair in New Orleans in 1984 Enterprise during static pad tests at Space Launch Complex-6 at Vandenberg Air Force, now Space Force, Base in 1985
Left: Enterprise as the backdrop for President Ronald W. Reagan welcomes home the STS-4 crew at NASA’s Dryden, now Armstrong, Flight Research Center in July 1982. Middle: Enterprise on display at the World’s Fair in New Orleans in 1984. Right: Enterprise during static pad tests at Space Launch Complex-6 at Vandenberg Air Force, now Space Force, Base in 1985.

With its major pathfinder tasks completed, and its future uncertain, NASA returned Enterprise to Dryden on Sep. 6, 1981, for long-term storage. On July 4, 1982, NASA used it as a backdrop for President Ronald W. Reagan to welcome home the STS-4 crew. The following year, NASA sent Enterprise on a European tour, departing Dryden on May 13, 1983, with stops in the United Kingdom, Germany, Italy, and France for the annual Paris Air Show. Enterprise made a stop in Ottawa, Canada, on its return trip to Dryden, arriving there June 13. Workers once again placed it in temporary storage. For its next public appearance, NASA placed it on display in the U.S. pavilion of the World’s Fair in New Orleans between April and November 1984. After the World’s Fair, NASA ferried Enterprise to Vandenberg AFB in California to conduct fit checks at the Space Launch Complex-6 (SLC-6), that NASA had planned to use for polar orbiting shuttle missions. NASA used Enterprise to conduct tests at SLC-6 similar to the 1979 tests at KSC’s Launch Complex 39. The tests at Vandenberg completed, NASA ferried Enterprise back to Dryden on May 24, 1985, but this time for only a short-term storage. On Sep. 20, 1985, NASA ferried Enterprise to KSC and placed it on temporary public display near the VAB, next to the Saturn V already displayed there. After two months on display at KSC, NASA flew Enterprise to Dulles International Airport in Chantilly, Virginia, arriving on Nov. 18. NASA officially retired Enterprise and transferred ownership to the Smithsonian Institution that had plans to build a large aircraft museum annex at the airport. The Smithsonian placed Enterprise in storage in a hangar, awaiting the completion of its new home. That turned into an 18-year wait.

Launch of STS-61A in October 1985, with Enterprise and the Saturn V in the foreground Enterprise in long-term storage at Dulles International Airport in Chantilly, Virginia Enterprise during arresting barrier testing at Dulles
Left: Launch of STS-61A in October 1985, with Enterprise and the Saturn V in the foreground. Middle: Enterprise in long-term storage at Dulles International Airport in Chantilly, Virginia. Right: Enterprise during arresting barrier testing at Dulles.

But even during that 18-year wait, NASA found practical use for the venerable Enterprise. In 1987, the agency studied how to handle an orbiter returning from space should it suffer a brake failure. To test the efficacy of an arresting barrier, workers at Dulles slowly winched Enterprise into a landing barrier to see if the vehicle suffered any damage. Later that same year, NASA used Enterprise to test various crew bailout procedures being developed in the wake of the Challenger accident. In 1990, experimenters used Enterprise’s cockpit windows to test mount an antenna for the Shuttle Amateur Radio Experiment, with no other orbiters available. Periodically, engineers removed parts from Enterprise to test for materials durability, and evaluated the structural integrity of the vehicle including its payload bay doors and found it to be in sound condition even after years in storage. In April 2003, in the wake of the Columbia accident, investigators borrowed Enterprise’s left landing gear door and part of the port wing for foam impact tests. The tests provided solid evidence for the foam strike as the cause of the accident.

Space shuttle Enterprise undergoes restoration at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum (NASM) in Chantilly, Virginia. Note the missing wing leading edge, donated for the Columbia accident investigation Enterprise on display at the Hazy Center
Left: Space shuttle Enterprise undergoes restoration at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum (NASM) in Chantilly, Virginia. Note the missing wing leading edge, donated for the Columbia accident investigation. Right: Enterprise on display at the Hazy Center. Image credits: courtesy NASM.

On Nov. 20, 2003, workers towed Enterprise from its storage facility into a newly completed display hangar at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum at Dulles. After specialists spent eight months restoring the orbiter, the museum placed it on public display on Dec. 15, 2004.

Space shuttle orbiters Enterprise, left, and Discovery meet nose-to-nose at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia Actor Leonard Nimoy greets Enterprise at New York’s John F. Kennedy International Airport
Left: Space shuttle orbiters Enterprise, left, and Discovery meet nose-to-nose at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia. Right: Actor Leonard Nimoy greets Enterprise at New York’s John F. Kennedy International Airport.

In 2011, NASA retired the space shuttle fleet and donated the vehicles to various museums around the country. The Intrepid Sea, Air & Space Museum in New York City acquired Enterprise, and on Apr. 19, 2012, workers removed the orbiter from its display at the Hazy Center – replacing it with the orbiter Discovery – and placed it atop a SCA for the final time. Eight days later, after a short flight from Dulles, Enterprise landed at John F. Kennedy International Airport. Workers lifted the orbiter from the SCA and placed it on a barge. It eventually arrived at the Intrepid Museum on June 3 and went on public display July 19. Enterprise suffered minor damage during Superstorm Sandy in October 2012, but workers fully restored it.

Enterprise in the Shuttle Pavilion at the Intrepid Sea, Air & Space Museum in New York City
Enterprise in the Shuttle Pavilion at the Intrepid Sea, Air & Space Museum in New York City. Image credit: courtesy Intrepid Museum.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      SPoC and DAF senior leaders came together to discuss exercising for Great Power Competition during a panel at Air, Space and Cyber Conference.

      View the full article
    • By European Space Agency
      On 18–19 September, Europe’s space industry from start-up companies to large system integrators gathered at ESA–ESTEC in the Netherlands for Industry Space Days 2024.
      View the full article
    • By European Space Agency
      Image: The Copernicus Sentinel-2 mission has snapped a souvenir of the Burning Man festival in the Black Rock desert in Nevada. View the full article
    • By NASA
      In September 1969, celebrations continued to mark the successful first human Moon landing two months earlier, and NASA prepared for the next visit to the Moon. The hometowns of the Apollo 11 astronauts held parades in their honor, the postal service recognized their accomplishment with a stamp, and the Smithsonian put a Moon rock on display. They addressed Congress and embarked on a 38-day presidential round the world goodwill tour. Eager scientists received the first samples of lunar material to study in their laboratories. Meanwhile, NASA prepared Apollo 12 for November launch as the astronauts trained for the mission with an increased emphasis on lunar science. Plans called for additional Moon landings in 1970, with spacecraft under construction and astronauts in training.
      Apollo 11
      For Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin, their busy August 1969 postflight schedule continued into September with events throughout the United States and beyond. These included attending hometown parades, dedicating a stamp to commemorate their historic mission, unveiling a display of a Moon rock they collected, addressing a Joint Meeting of Congress, and visiting contractor facilities that built parts of their rocket and spacecraft. They capped off the hectic month with their departure, accompanied by their wives, on a presidential round-the-world goodwill tour that lasted into early November.

      Left: Neil A. Armstrong at his hometown parade in Wapakoneta, Ohio. Image credit: Ohio Historical Society. Middle: Edwin E. “Buzz” Aldrin at his hometown parade in Montclair, New Jersey. Image credit: Star-Register. Right: Michael Collins at his adopted hometown parade in New Orleans, Louisiana. Image credit: AP Photo.
      On Sep. 6, each astronaut appeared at hometown events held in their honor. Apollo 11 Commander Armstrong’s hometown of Wapakoneta, Ohio, welcomed him with a parade and other events.  Montclair, New Jersey, held a parade to honor hometown hero Lunar Module Pilot (LMP) Aldrin. And New Orleans, Louisiana, the adopted hometown of Command Module Pilot (CMP) Michael Collins, honored him with a parade.

      Left: Apollo 11 astronauts Michael Collins, left, Neil A. Armstrong, and Edwin E. “Buzz” Aldrin with Postmaster General Winton M. Blount display an enlargement of the stamp commemorating the first Moon landing. Right: Aldrin, left, Collins, and Armstrong examine a Moon rock with Smithsonian Institution Director General of Museums Frank A. Taylor.
      Three days later, the astronauts reunited in Washington, D.C., where they appeared at the dedication ceremony of a new postage stamp that honored their mission. The U.S. Postal Service had commissioned artist Paul Calle in 1968 to design the stamp. The Apollo 11 astronauts had carried the stamp’s master die to the Moon aboard the Lunar Module (LM) Eagle and after its return to Earth the Postal Service used it to make the printing pages for the 10¢ postage stamp. At the National Postal Forum, Armstrong, Collins, and Aldrin unveiled the stamp together with Postmaster General Winton M. Blount, and each astronaut received an album with 30 of the “First Man on the Moon” stamps. On Sep. 15, the crew returned to Washington to present a two-pound rock they collected in the Sea of Tranquility during their historic Moon walk to Frank A. Taylor, the Director General of Museums at the Smithsonian Institution in Washington, D.C. The rock went on public display two days later at the Smithsonian’s Arts and Industries Building, the first time the public could view a Moon rock. 

      Left: Apollo 11 astronauts Michael Collins, left, Edwin E. “Buzz Aldrin, and Neil A. Armstrong each addressed a Joint Meeting of Congress, with Vice President Spiro T. Agnew and Speaker of the House John W. McCormack seated behind them. Middle: Apollo 11 astronauts’ wives Joan Aldrin, left, Patricia Collins, and Janet Armstrong receive recognition in the Visitors Gallery of the House Chamber. Right: The Apollo 11 astronauts and their wives cut at a cake at a reception at the Capitol.
      With their wives observing from the Visitors Gallery of the House of Representatives, on Sep. 16 Armstrong, Aldrin, and Collins addressed a Joint Meeting of Congress. In this same chamber in May 1961, President John F. Kennedy committed the nation to land a man on the Moon and return him safely to the Earth before the end of decade. In a sense, the astronauts reported on the safe and successful completion of that challenge. Speaker of the House John W. McCormack introduced the astronauts to the gathering, as Vice President Spiro T. Agnew looked on. Each astronaut reflected on the significance of the historic mission.
      Armstrong noted that their journey truly began in the halls of Congress when the Space Act of 1958 established NASA. Aldrin commented that “the Apollo lesson is that national goals can be met when there is a strong enough will to do so.” Collins shared a favorite quotation of his father’s to describe the value of the Apollo 11 mission: “He who would bring back the wealth of the Indies must take the wealth of the Indies with him.” Armstrong closed with, “We thank you, on behalf of all the men of Apollo, for giving us the privilege of joining you in serving – for all mankind.” After their speeches, the astronauts presented one American flag each to Vice President Agnew in his role as President of the Senate and to Speaker McCormack. The flags, that had flown over the Senate and House of Representatives, had traveled to the Moon and back with the astronauts. Speaker McCormack recognized the astronauts’ wives Jan Armstrong, Joan Aldrin, and Pat Collins for their contributions to the success of the Apollo 11 mission.

      Left: Neil A. Armstrong and Michael Collins address North American Rockwell employees in Downey, California. Right: Presidential Boeing VC-137B jet at Ellington Air Force Base in Houston to take the Apollo 11 astronauts and their wives on the Giantstep goodwill world tour. 
      On Sep. 26, Armstrong and Collins visited two facilities in California of North American Rockwell (NAR) Space Division, the company that built parts of the Saturn V rocket and Apollo 11 spacecraft. First, they stopped at the Seal Beach plant that built the S-II second stage of the rocket, where 3,000 employees turned out to welcome them. Armstrong commented to the assembled crowd that during the July 16, 1969, liftoff, “the S-II gave us the smoothest ride ever.” Collins added that despite earlier misgivings about using liquid hydrogen as a rocket fuel, “after the ride you people gave us, I sure don’t have doubts any longer.” About 7,000 employees greeted the two astronauts and showered them with confetti at their next stop, the facility in Downey that built the Apollo Command and Service Modules. Both Armstrong and Collins thanked the team for building an outstanding spacecraft that took them to the Moon and returned them safely to Earth. The astronauts inspected the Command Module (CM) for Apollo 14, then under construction at the plant.
      On the morning of Sep. 29, a blue and white Boeing VC-137B presidential jet touched down at Ellington Air Force Base in Houston. Neil and Jan Armstrong, Buzz and Joan Aldrin, and Mike and Pat Collins boarded the plane and joined their entourage of State Department and NASA support personnel. They departed Houston for Mexico City, the first stop on the Apollo 11 Giantstep goodwill world tour. They didn’t return to the United States until Nov. 5, having visited 29 cities in 24 countries, just nine days before Apollo 12 took off on humanity’s second journey to land on the Moon.

      Distribution of Apollo 11 lunar samples to scientists at the Lunar Receiving Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.
      Back in Houston, distribution to scientists of samples of the lunar material returned by the Apollo 11 astronauts began on Sep. 17 at the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Daniel H. Anderson, curator of lunar samples at the LRL, supervised the distribution of approximately 18 pounds – about one-third of the total Apollo 11 lunar material – to 142 principal investigators from the United States and eight other countries according to prior agreements. The scientists examined the samples at their home institutions and reported their results at a conference in Houston in January 1970. They returned to the LRL any of the samples not destroyed during the examination process.
      Apollo 12
      In September 1969, NASA continued preparations for the second Moon landing mission, Apollo 12, scheduled for launch on Nov. 14. The Apollo 12 mission called for a pinpoint landing in Oceanus Procellarum (Ocean of Storms) near where the robotic spacecraft Surveyor 3 had touched down in April 1967. They planned to stay on the lunar surface for about 32 hours, compared to Apollo 11’s 21 hours, and conduct two surface spacewalks totaling more than 5 hours. During the first of their two excursions, the astronauts planned to deploy the Apollo Lunar Surface Experiments Package (ALSEP) and collect lunar samples. During the second spacewalk, they planned to visit Surveyor 3 and remove some of its equipment for return to Earth and collect additional lunar samples. The Apollo 12 prime crew of Commander Charles “Pete” Conrad, CMP Richard F. Gordon, and LMP Alan L. Bean and their backups David R. Scott, Alfred M. Worden, and James B. Irwin continued intensive training for the mission.

      Left: The Apollo 12 Saturn V exits the Vehicle Assembly Building on its way to Launch Pad 39A. Middle: The Apollo 12 Saturn V rolling up the incline as it approaches Launch Pad 39A. Right: Apollo 12 astronauts Alan L. Bean, left, Richard F. Gordon, and Charles “Pete” Conrad pose in front of their Saturn V during the rollout to the pad.
      On Sep. 8, the Saturn V rocket with the Apollo 12 spacecraft on top rolled out from Kennedy Space Center’s (KSC) Vehicle Assembly Building to Launch Pad 39A. The rocket made the 3.5-mile trip to the pad in about 6 hours, with Conrad, Gordon, and Bean on hand to observe the rollout. Workers at the pad spent the next two months thoroughly checking out the rocket and spacecraft to prepare it for its mission to the Moon. The two-day Flight Readiness Test at the end of September ensured that the launch vehicle and spacecraft systems were in a state of flight readiness. In addition to spending many hours in the spacecraft simulators, Conrad and Bean as well as their backups Scott and Irwin rehearsed their lunar surface spacewalks including the visit to Surveyor 3. Workers at NASA’s Jet Propulsion Laboratory in Pasadena, California, shipped an engineering model of the robotic spacecraft to KSC, and for added realism, engineers there mounted the model on a slope to match its relative position on the interior of the crater in which it stood on the Moon. Conrad and Scott used the Lunar Landing Training Vehicle (LLTV) at Ellington Air Force Base (AFB) near MSC to train for the final 200 feet of the descent to the lunar surface.

      Left: Apollo 12 astronauts Alan L. Bean, left, and Charles “Pete” Conrad rehearse their lunar surface spacewalks at NASA’s Kennedy Space Center in Florida. Middle: Conrad trains in the use of the Hasselblad camera he and Bean will use on the Moon. Right: Bean, left, and Conrad train with an engineering model of a Surveyor spacecraft.
      With regard to lunar geology training, the Apollo 12 astronauts had one advantage over their predecessors – they could inspect actual Moon rocks and soil returned by the Apollo 11 crew. On Sep. 19, Conrad and Bean arrived at the LRL, where Lunar Sample Curator Anderson met them. Anderson brought out a few lunar rocks and some lunar soil that scientists had already tested and didn’t require to be stored under vacuum or other special conditions, allowing Conrad and Bean to examine them closely and compare them with terrestrial rocks and soil they had seen during geology training field trips. This first-hand exposure to actual lunar samples significantly augmented Conrad and Bean’s geology training. To highlight the greater emphasis placed on lunar surface science, the Apollo 12 crews (prime and backup) went on six geology field trips compared to just one for the Apollo 11 crews.

      Left: Apollo 12 astronauts Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean prepare for water egress training aboard the MV Retriever in the Gulf of Mexico. Middle: Wearing Biological Isolation Garments and assisted by a decontamination officer, standing in the open hatch, Apollo 12 astronauts await retrieval in the life raft. Right: The recovery helicopter hoists the third crew member using a Billy Pugh net.
      Although the Apollo 11 astronauts returned from the Moon in excellent health and scientists found no evidence of any harmful lunar microorganisms, NASA managers still planned to continue the postflight quarantine program for the Apollo 12 crew members, their spacecraft, and the lunar samples they brought back. The first of these measures involved the astronauts donning Biological Isolation Garments (BIG) prior to exiting the spacecraft after splashdown. Since they didn’t carry the BIGs with them to the Moon and back, one of the recovery personnel, also clad in a BIG, opened the hatch to the capsule after splashdown and handed the suits to the astronauts inside, who donned them before exiting onto a life raft.
      On Sep. 20, the Apollo 12 astronauts rehearsed these procedures, identical to the ones used after the first Moon landing mission, in the Gulf of Mexico near Galveston, Texas, using a boilerplate Apollo CM and supported by the Motorized Vessel (MV) Retriever. As it turned out, NASA later removed the requirement for the crew to wear BIGs, and after their splashdown the Apollo 12 crew wore overalls and respirators.
      Apollo 13

      Left: Apollo 13 prime crew members James A. Lovell and Thomas K. “Ken” Mattingly in the Command Module (CM) for an altitude chamber test – Fred W. Haise is out of the picture at right – at NASA’s Kennedy Space Center in Florida. Middle: Apollo 13 backup astronaut John L. “Jack” Swigert prepares to enter the CM for an altitude chamber test. Right: Apollo 13 backup crew members John W. Young, left, and Swigert in the CM for an altitude chamber test – Charles M. Duke is out of the picture at right.
      Preparations for Apollo 13 continued in parallel. In KSC’s Manned Spacecraft Operations Building (MSOB), Apollo 13 astronauts completed altitude chamber tests of their mission’s CM and LM. Prime crew members Commander James A. Lovell, CMP Thomas K. “Ken” Mattingly, and LMP Fred W. Haise completed the CM altitude test on Sep. 10, followed by their backups John W. Young, Jack L. Swigert, and Charles M. Duke on Sep. 17. The next day, Lovell and Haise completed the altitude test of the LM, followed by Young and Duke on Sep. 22. At the time of these tests, Apollo 13 planned to launch on March 12, 1970, on a 10-day mission to visit the Fra Mauro highlands region of the Moon. To prepare for their lunar surface excursions, Lovell, Haise, Young, and Duke, accompanied by geologist-astronaut Harrison H. “Jack” Schmitt and Caltech geologist Leon T. “Lee” Silver, spent the last week of September in Southern California’s Orocopia Mountains immersed in a geology boot camp.
      Apollo 14 and 15

      Left: At North American Rockwell’s (NAR) Downey, California, facility, workers assemble the Apollo 14 Command Module (CM), left, and Service Module. Right: NAR engineers work on the CM originally intended for Apollo 15.
      Looking beyond Apollo 13, the Apollo 14 crew of Commander Alan B. Shepard, CMP Stuart A. Roosa, and LMP Edgar D. Mitchell and their backups Eugene A. Cernan, Ronald E. Evans, and Joe H. Engle had started training for their mission planned for mid-year 1970. At the NAR facility in Downey, engineers prepared the CM and SM and shipped them to KSC in November 1969. Also at Downey, workers continued assembling the CM and SM planned for the Apollo 15 mission in late 1970. As events transpired throughout 1970, plans for those two missions changed significantly.
      NASA management changes

      Left: Portrait of NASA astronaut James A. McDivitt. Right: NASA Administrator Thomas O. Paine, right, swears in George M. Low as NASA deputy administrator.
      On Sept. 25, NASA appointed veteran astronaut James A. McDivitt as the Manager of the Apollo Spacecraft Program Office at MSC. McDivitt, selected as an astronaut in 1962, commanded two spaceflights, Gemini IV in June 1965 that included the first American spacewalk and Apollo 9 in March 1969, the first test of the LM in Earth orbit. He succeeded George M. Low who, in that position since April 1967, led the agency’s efforts to recover from the Apollo 1 fire and originated the idea to send Apollo 8 on a lunar orbital mission. Under his tenure, NASA successfully completed five crewed Apollo missions including the first human Moon landing. MSC Director Robert R. Gilruth initially assigned Low to plan future programs until Nov. 13, when President Richard M. Nixon nominated him as NASA deputy administrator. The Senate confirmed Low’s nomination on Nov. 25, and NASA Administrator Thomas O. Paine swore him in on Dec. 3. Low filled the position vacant since March 20, 1969.
      To be continued …
      News from around the world in September 1969:
      September 2 – The first automated teller machine is installed at a Chemical Bank branch in Rockville Center, New York.
      September 13 – Hannah-Barbera’s “Scooby Doo, Where Are You?” debuts on CBS.
      September 20 – John Lennon announces in a private meeting his intention to leave The Beatles.
      September 22 – San Francisco Giant Willie Mays becomes the second player, after Babe Ruth, to hit 600 career home runs.
      September 23 – “Butch Cassidy and the Sundance Kid,” starring Paul Newman and Robert Redford, premieres.
      September 24 – Tokyo’s daily newspaper Asahi Shimbun announced that it would be the first to deliver an edition electronically, using a FAX machine that could print a page in five minutes.
      September 26 – Apple Records releases “Abbey Road,” The Beatles’ 11th studio album.
      Explore More
      8 min read 65 Years Ago: First Powered Flight of the X-15 Hypersonic Rocket Plane 
      Article 2 days ago 8 min read 55 Years Ago: Space Task Group Proposes Post-Apollo Plan to President Nixon
      Article 3 days ago 7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 1 week ago View the full article
    • By NASA
      This enormous piece of space hardware is NASA’s Nancy Grace Roman Space Telescope’s spacecraft bus, which will maneuver the observatory to its place in space and enable it to function while there. It is photographed here in the largest clean room at NASA’s Goddard Space Flight Center, where engineers are inspecting it upon delivery. The bus rests atop an aluminum ring that will temporarily protect its underside. The two copper-colored flaps are Roman’s Lower Instrument Sun Shade –– deployable panels designed to help shield the observatory from sunlight.NASA/Chris Gunn The spacecraft bus that will deliver NASA’s Nancy Grace Roman Space Telescope to its orbit and enable it to function once there is now complete after years of construction, installation, and testing.
      Now that the spacecraft is assembled, engineers will begin working to integrate the observatory’s other major components, including the science instruments and the telescope itself.
      “They call it a spacecraft bus for a reason — it gets the telescope to where it needs to be in space,” said Jackie Townsend, the Roman deputy project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But it’s really more like an RV because it has a whole assortment of functions that enable Roman to accomplish its scientific goals while out there too.”
      Those goals include surveying wide swaths of the universe to study things like: dark energy, a mysterious cosmic pressure thought to accelerate the universe’s expansion; dark matter, invisible matter seen only via its gravitational influence; and exoplanets, worlds beyond our solar system.
      The mission’s science wouldn’t be possible without a spacecraft to transport the telescope, point the observatory toward different cosmic targets, provide power, communicate with Earth, control and store instrument data, and regulate Roman’s temperature. Nearly 50 miles of electrical cabling are laced throughout the assembly to enable different parts of the observatory to communicate with each other.
      The spacecraft will also deploy several major elements that will be stowed for launch, including the solar panels, deployable aperture cover, lower instrument Sun shade, and high-gain antenna. It’s also responsible for collecting and beaming down data, which is no small task for a space observatory that will survey the cosmos like Roman will.
      “Roman will send back 1.4 terabytes of data per day, compared to about 50 to 60 gigabytes from the James Webb Space Telescope and three gigabytes from the Hubble Space Telescope,” said Jason Hylan, the Roman observatory manager at NASA Goddard. “Webb’s daily downlink is roughly comparable to 13 hours of YouTube video at the highest quality while Roman’s would amount to about 2 weeks.”
      This top-down view shows NASA’s Nancy Grace Roman Space Telescope’s spacecraft bus from another angle. It rests atop an aluminum ring that will not be part of the observatory and is surrounded by an enclosure used in testing to ensure electromagnetic interference will not affect the bus’s sensitive electronics. The bus is covered in gray bagging material to prevent contamination –– even tiny stray particles could affect its performance.NASA/Chris Gunn A Goddard Grand Slam
      This milestone is the culmination of eight years of spacecraft design work, building, and testing by hundreds of people at Goddard.
      “Goddard employees were the brains, designers, and executors. And they worked with vendors who supplied all the right parts,” Townsend said. “We leaned on generations of expertise in the spacecraft arena to work around cost and schedule challenges that arose from supply chain issues and the pandemic.”
      One time- and money-saving technique the team came up with was building a spacecraft mockup, called the structural verification unit. That allowed them to do two things at once: complete strength testing on the mockup, designed specifically for that purpose, while also assembling the actual spacecraft.
      The spacecraft’s clever layout also allowed the team to adapt to changing schedules. It’s designed to be modular, “more like Trivial Pursuit pie pieces than a nesting egg, where interior components are buried inside,” Townsend said. “That’s been a game-changer because you can’t always count on things arriving in the order you planned or working perfectly right away with no tweaks.” It also increased efficiency because people could work on different portions of the bus at the same time without interfering with each other.
      The slightly asymmetrical and hexagonal spacecraft bus is about 13 feet (4 meters) wide by 6.5 feet (2 meters) tall and weighs in at 8,400 pounds (3,800 kilograms).
      While it may look small in this photo, the spacecraft bus for NASA’s Nancy Grace Roman Space Telescope is 8 feet (2.5 meters) wide by 6.5 feet (2 meters) tall and weighs in at 8,400 pounds (3,800 kilograms). In this photo, it rests atop an aluminum ring that will not be part of the observatory. The bundles of wires on top are part of more than 50 miles of cabling laced throughout the assembly to enable different parts of the observatory to communicate with each other.NASA/Chris Gunn One reason it doesn’t weigh more is that some components have been partially hollowed out. If you could peel back some of the spacecraft’s panels, you’d find superthin metallic honeycomb sandwiched between two slim layers of metal. And many of the components, such as the antenna dish, are made of strong yet lightweight composite materials.
      When the spacecraft bus was fully assembled, engineers conducted a comprehensive performance test. Prior to this, each component had been tested individually, but just like with a sports team, the whole unit has to perform well together.
      “The spacecraft passed the test, and now we’re getting ready to install the payload –– Roman’s instruments and the telescope itself,” said Missie Vess, a spacecraft systems engineer for Roman at NASA Goddard. “Next year, we’ll test these systems together and begin integrating the final components of the observatory, including the deployable aperture cover, outer barrel assembly, and solar panels. Then we’ll finally have ourselves a complete observatory, on track for launch by May 2027.”
      To virtually tour an interactive version of the telescope, visit:
      https://roman.gsfc.nasa.gov/interactive
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      ​​Media Contact:
      Claire Andreoli
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Explore More
      2 min read Solar Panels for NASA’s Roman Space Telescope Pass Key Tests
      Article 3 weeks ago 6 min read Primary Instrument for Roman Space Telescope Arrives at NASA Goddard
      Article 1 month ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 2 months ago Share
      Details
      Last Updated Sep 17, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Communicating and Navigating with Missions Dark Energy Dark Matter Exoplanets Goddard Space Flight Center Goddard Technology Space Communications Technology Technology The Universe View the full article
  • Check out these Videos

×
×
  • Create New...