Jump to content

Sols 4253-4254: Pit Stop for Contact Science


Recommended Posts

  • Publishers
Posted

2 min read

Sols 4253-4254: Pit Stop for Contact Science

https-mars-nasa-gov-msl-raw-images-proj-
This image was taken by Front Hazard Avoidance Camera (Front Hazcam) onboard NASA’s Mars rover Curiosity on Sol 4251 (2024-07-22 00:02:59 UTC

Earth planning date: Monday, July 22, 2024

Last week we wrapped up activities at Fairview Dome and started heading south towards our next potential drill location in the Upper Gediz Vallis ridge campaign. We had about a 29-meter (about 95 feet) drive over the weekend, which set us up nicely for contact science and remote sensing today.

Today’s two-sol plan includes APXS and MAHLI on a gray rock named “Discovery Pinnacle” to assess variations in bedrock chemistry and compare it to what we have seen recently. We also planned ChemCam LIBS on “Miguel Meadow” to evaluate the typical bedrock in our workspace, as seen in the above image from the front Hazcam. The plan also includes a Mastcam mosaic covering the large patch of light-toned rocks in front of the rover to look for variations in lithology. Two ChemCam long-distance RMIs are also planned to evaluate the stratigraphy exposed by a channel cut into the Gediz Vallis ridge deposit, and to look more closely at a well-laminated dark-toned boulder on the channel floor. Then Curiosity will drive about 16 meters (about 52 feet) farther south, and will take post-drive imaging to help us evaluate another patch of light-toned bedrock in the next plan. 

In addition to targeted remote sensing, today’s plan includes observations of atmospheric opacity, searching for dust devils, an autonomously selected ChemCam AEGIS target, and standard DAN and REMS activities.

We’re all curious to see what Wednesday’s workspace will hold as we start thinking about the next place to drill! Meanwhile, much of the science team is gathered in Pasadena, California, this week at the Tenth International Conference on Mars, sharing lots of exciting results from the mission thus far. Looking forward to what comes next!

Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center

Share

Details

Last Updated
Jul 23, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4511-4512: Low energy after a big weekend?
      This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4510 (2025-04-14 03:43:40 UTC). NASA/JPL-Caltech Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center
      Earth planning date: Monday, April 14, 2025
      We all know the feeling: it’s Monday morning after a big weekend and you’re coming into the week wishing you’d had a little more time to rest and recharge.  Well, Curiosity probably feels the same way today. Curiosity accomplished a lot over the weekend, including full contact science, a MAHLI stereo imaging test, testing the collection of ChemCam passive spectral data at the same time as data transmission with one of the orbiters, and some APXS and MAHLI calibration target activities, plus a long 57 m drive. It was great to see all of those activities in the plan and to see some great drive progress. But that means we’re a bit tight on power for today’s plan!
      I was on shift as Long Term Planner today, and the team had to think carefully about science priorities to fit within our power limit for today’s plan, and how that will prepare us for the rest of the week.  The team still managed to squeeze a lot of activities into today’s 2-sol plan. First, Curiosity will acquire Mastcam mosaics to investigate local stratigraphic relationships and diagenetic features. Then we’ll acquire some imaging to document the sandy troughs between bedrock blocks to monitor active surface processes. We’ll also take a Navcam mosaic to assess atmospheric dust. The science block includes a ChemCam LIBS observation on the bedrock target “Santa Margarita” and a long distance RMI mosaic of “Ghost Mountain” to look for possible boxwork structures. Then Curiosity will use the DRT, APXS and MAHLI to investigate the finely-laminated bedrock in our workspace at a target named “The Grotto.”  We’ll also collect APXS and MAHLI data on a large nodule in the workspace named “Torrey Pines” (meanwhile the Torrey Pines here on Earth was shaking in today’s southern California earthquakes! All is well but it gave some of our team members an extra jolt of adrenaline right before the SOWG meeting).  The second sol is focused on continuing our drive to the south and taking post-drive imaging to prepare for Wednesday’s plan.
      Phew! Good job Curiosity, you made it through Monday.
      Explore More
      3 min read Sols 4509-4510: A weekend of long drives


      Article


      38 mins ago
      2 min read Sols 4507-4508: “Just Keep Driving”


      Article


      4 days ago
      3 min read Sols 4505-4506: Up, up and onto the Devil’s Gate 


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


      The Mars Report


      The Mars Report newsletter from NASA is your source for everything on or about the Red Planet. We bring you…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4509-4510: A weekend of long drives
      This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4507 (2025-04-11 03:54:35 UTC). Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Earth planning date: Friday, April 11, 2025
      Curiosity is continuing to book it to the potential boxwork structures.  The rover drove over 50 meters on Wednesday, and we plan to drive more than 50 meters again in today’s plan thanks to an unusually good viewshed that allows us to see far ahead.  We’ve been able to see glimpses of the boxwork structures in the distance for a few weeks now, and I am really excited about being able to plan long drives that get us closer and closer. What will we find when we reach them?
      Power was on everyone’s mind as we put the plan together today. The science team had lots of amazing ideas about observations to collect from our current location, but we had to carefully plan and prioritize them to make sure we didn’t use too much power and leave the rover battery lower than we’d like for Monday’s plan.  Winter on Mars certainly keeps us on our toes!  We ended up putting together what I think is a pretty good set of activities for the weekend.  MAHLI, APXS, and ChemCam will all work together to observe a flat rock in front of us named “Iron Mountain.” MAHLI will also do an experiment with this rock, testing different combinations of camera positions to see which produces the best data to help us generate 3D models of the rock’s surface.  I know rocks don’t have feelings, but if they did, I hope Iron Mountain can use this time to feel a bit like a movie star on the red carpet, getting photographed from all angles. Mastcam will also be photographing the surroundings, working with ChemCam’s RMI imager to take images the ridge containing boxwork structures named “Ghost Mountain,” and taking some solo shots of targets in the foreground named “Redondo Flat,” “Silverwood Sanctuary,” and the oft photographed Gould Mesa.  Navcam, REMS, and DAN round out the science plan with some environmental observations. We’ll be getting one more science and engineering hybrid observation when we collect ChemCam passive spectral data of the instrument’s calibration target in parallel with one of our communication passes.  This observation is part of a series of tests we’re doing to run rover activities in parallel with these passes, and if successful, will allow us to be more even more power efficient in the future.
      We’re also celebrating a soliday this weekend, which means we only have a two-sol plan instead of our usual three as the Mars and Earth time zones re-align for the next few weeks.  I’m looking forward to seeing where Curiosity drives next week.
      Explore More
      2 min read Sols 4511-4512: Low energy after a big weekend?


      Article


      16 mins ago
      2 min read Sols 4507-4508: “Just Keep Driving”


      Article


      4 days ago
      3 min read Sols 4505-4506: Up, up and onto the Devil’s Gate 


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


      The Mars Report


      The Mars Report newsletter from NASA is your source for everything on or about the Red Planet. We bring you…

      View the full article
    • By NASA
      3 min read
      What Does NASA Science Do For Me?
      It is easy to forget that all of the hard work, technology, and money that NASA pours into space research actually comes back down to Earth. In fact, many of NASA’s missions and research focus on our planet! NASA also has many other projects with partners that use their research to enrich everyone’s lives here on Earth- and this is not including such notable achievements as satellite weather maps!
      The NASA Spinoff program was created over fifty years ago to facilitate the licensing and development of NASA’s technologies for commercial use by other companies and agencies. This program helps “spin off” NASA’s technology for use by others here on Earth and, in some cases, in space. To date, over 2,000 spinoff technologies have been documented by the NASA Spinoff program.
      Some notable examples of NASA spinoffs include:
      Solar Cells Water Purification Memory foam for your cozy bed and chairs Firefighting equipment, especially lightweight fireproof clothing and masks with much-improved air filters Highway safety grooves, which help your car go around curves without slipping off by giving your tire better traction Many safety features in modern aircraft, such as de-icing technologies for wings, chemical detectors and imaging for plane maintenance, improved flight controls, and many more Image stabilization for your binoculars and video cameras The Dustbuster Healthier baby food …and many more! Check out this Wikipedia page for a more extensive list of the technologies that NASA has had a direct role in developing, many of which we now take for granted.
      It is worth noting that there are a few technologies commonly thought to have been created by NASA that were actually independently developed. Tang is a great example; it was developed by General Foods in 1957 and attained fame when used during food testing by NASA in the 60s (even though some astronauts were not fans of the powdery, not-quite-orange juice). The microwave oven is another famous technology often falsely thought of as a NASA development. It was, in fact, created shortly after World War 2, when radar technicians discovered that it wasn’t such a good idea to stand in front of active equipment! Thankfully, they found out via a melted candy bar and not from severe burns!
      Every year, NASA releases a report on its program, and the 2025 edition of the NASA Spinoff magazine is now available! You can view the entire NASA Spinoff archive, dating back to 1976, here.
      Originally posted by Dave Prosper: May 2013
      Last Updated by Kat Troche: March 2025
      View the full article
    • By NASA
      In an open challenge, NASA is seeking innovative business models that propose new approaches to solving complex Earth science problems using unconventional computing methods and is holding an informational webinar on Monday, April 28.  
      The agency’s Beyond the Algorithm Challenge, sponsored by NASA’s Earth Science Technology Office, asks for proposals to more rapidly and accurately understand our home planet using transformative computing methods such as quantum computing, quantum machine learning, neuromorphic computing, in-memory computing, or other approaches.  
      The Beyond the Algorithm Challenge kicked off in March and consists of three phases. Participant submissions, which are due on July 25, will be evaluated based on creativity, technical feasibility, impact, business model evaluation, and presentation. Up to 10 finalists will be invited to present their ideas to a panel of judges at a live pitch event, and winners will a monetary prize.  
      For details about the challenge, interested participants can sign up for the informational webinar on Monday, April 28, here. 
      Using the vantage point of space, NASA’s observations of Earth increase our understanding of our home planet, improve lives, and safeguard our future. The capabilities of NASA’s Earth Science Division include developing new technology, delivering actionable science, and providing environmental information to meet the increased demand for more sophisticated, more accurate, more trustworthy, and more actionable environmental information for decision-makers and policymakers.  
      For example, rapid flood analysis is one area that may benefit from computing advancements. Flood hazards affect personal safety and land use, directly affecting individual livelihoods, community property, and infrastructure development and resilience. Advanced flood analysis capability enables contributions to protect and serve impacted communities, making a tangible difference in areas such as disaster preparedness, recovery, and resilience.  
      Advancements in computing capabilities show promise in overcoming processing power, efficiency, and performance limitations of conventional computing methods in addressing Earth science challenges like rapid flood analysis. Quantum computers offer a fundamentally different paradigm of computation and can solve certain classes of problems exponentially faster than their classical counterparts. Likewise, quantum machine learning offers the potential to reduce required training data or produce more accurate models. The emerging field of neuromorphic, or brain-inspired, computing holds significant promise for algorithm development optimized for high-speed, low power. And in-memory computing saves time and energy for data-heavy processes like artificial intelligence training. 
      Blue Clarity is hosting the Beyond the Algorithm Challenge on behalf of NASA. The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate, manages the challenge. The program supports global public competitions and crowdsourcing as tools to advance NASA research and development and other mission needs. 
      For more information about the contest and a full list of rules and eligibility requirements, visit:  
      https://www.nasa-beyond-challenge.org
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4507-4508: “Just Keep Driving”
      NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on April 9, 2025, Sol 4505 of the Mars Science Laboratory Mission, at 00:56:30 UTC. NASA/JPL-Caltech/MSSS Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
      Earth planning date: Wednesday, April 9, 2025
      Our drive from Monday’s plan was mostly successful, putting us ~22 meters down the “road” out of an expected 30 meters. A steering command halted the drive a little short when we tried to turn-in-place but instead turned into a rock, which also had the effect of making our position too unstable for arm activities. Oh well! APXS data has been showing the recent terrain as being pretty similar in composition, so the team isn’t complaining about trying again after another drive. Plus, keeping the arm stowed should give us a little more power to play with in the coming sols (an ongoing struggle this Martian winter).
      Recently, my job on Mastcam has been to make sure our science imaging is as concurrent as possible with required rover activities. This strategy helps save rover awake time, AKA power consumption. Today we did a pretty good job with this, only increasing the total awake time by ~2 minutes even though we planned 52 images! Our imaging today included a mosaic of the “Devil’s Gate” ridge including some nodular bedrock and distant “Torote Bowl,” a mosaic of a close-by vein network named “Moonstone Beach,” and several sandy troughs surrounding the bedrock blocks we see here. 
      ChemCam is planning a LIBS raster on a vertical vein in our workspace named “Jackrabbit Flat,” and a distant RMI mosaic of “Condor Peak” (a butte to the north we’re losing view of). Our drive will happen in the 1400 hour on the first sol, hopefully landing us successfully 53 meters further into this new valley on our way to the boxwork structures to the west! Post-drive, we’re including a test of a “Post Traverse Autonav Terrain Observation” AKA PoTATO – an easy drop-in activity for ground analysis of a rover-built navigation map of our new terrain. Plus we get to say PoTATO a lot.
      Explore More
      3 min read Sols 4505-4506: Up, up and onto the Devil’s Gate 


      Article


      3 days ago
      3 min read Sols 4502-4504: Sneaking Past Devil’s Gate


      Article


      4 days ago
      3 min read Sols 4500-4501: Bedrock With a Side of Sand


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Curiosity Rover (MSL)


      View the full article
  • Check out these Videos

×
×
  • Create New...