Jump to content

Sols 4250-4252: So Many Rocks, So Little Time


NASA

Recommended Posts

  • Publishers

3 min read

Sols 4250-4252: So Many Rocks, So Little Time

A grayscale image from the Martian surface shows a wide, flat area with multiple small rocks scattered around the surface, with a couple of dusted-over slabs, lighter in color than the surrounding ground, making up part of this flat area. Other parts of the terrain are covered in smooth streaks, resembling very fine-grained mud that has dried. A large dark area, looking like a shadow or fissure, cuts through the scene from the lower left of the frame to the upper right. At center is the mechanical arm of the Curiosity rover, extending into the middle of the frame, then at a joint, bending down to the surface. At the end of the arm, touching the ground, is a large instrument, with a central shaft going into a body that has cube- and cylinder-shaped pieces sticking out in five or more directions.
This image was taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4248 – Martian day 4,248 of the Mars Science Laboratory mission – on July 19, 2024, at 02:34:33 UTC.

Earth planning date: Friday, July 19, 2024

As usual with our weekend plans, we are packing a lot of science into today’s three-sol plan. I had the fun of planning a complex and large set of arm activities as the Arm Rover Planner today. Since we did not drive in Wednesday’s plan, we still are looking at targets in the same workspace – shown in the image with the arm down on a contact science target. We are finishing up the observations at our current location on “Fairview Dome.” 

In our first set of imaging, we begin with a Navcam dust devil movie. Then, ChemCam is taking a LIBS observation on “Koip Peak” (a nodular bedrock) and an RMI mosaic on Texoli butte. We also have Mastcam imaging on Koip Peak, “Amphitheater Dome” (Wednesday’s contact science target), the channel wall, and the AEGIS target from sol 4247. After a nap, we’re ready for the arm. The arm work was challenging today, as we had a lot to do. We start by taking MAHLI images of a target named “Saddlebag Lake,” a bumpy, rough part of the bedrock. We then brush and take MAHLI images of “Eagle Scout Peak,” which is a dusty portion of the same bedrock. We are also running an experiment today to see if we can run the DRT brush in parallel with using our UHF antenna, to downlink data without impacting the data. After integrating with APXS on Eagle Scout Peak, we take nighttime MALHI imaging (using the LEDs) of the CheMin inlet to look for any signs of stuck sample and stow the arm. We are also cleaning out the sample from the CheMin instrument, by “dumping” it out and then running an analysis on the empty cell. 

The second sol begins with more atmospheric observations. We have another ChemCam LIBS observation of the “Smith Peak” target, which is a dark and dusty spot on the bedrock, and Mastcam mosaics of “Virginia Peak” (the gray edge of the rock), the summit of “Milestone Peak”, and “McDonald Pass” (a nearby piece of bedrock that looks similar to our recent drill target, “Whitebark Pass”). We’re then ready to drive. Today’s drive is taking us about 30 meters south (about 98 feet). We’re driving cross-slope, which is always a challenge because we have to account for sliding sideways, away from the planned path. Fortunately there are no major hazards in the area, so we can tolerate some deviation from our path. This drive should take us close to our next potential drill location! We’re also testing, for the first time on Mars, a new capability that helps the rover make more precise arc turns, which can reduce the amount of steering we need to do, and help preserve our wheels. After taking our normal post-drive imaging, our final activity on this sol is an APXS atmospheric observation. 

On our third sol, around noon, we are taking a ChemCam AEGIS observation and a lot of atmospheric observations, including another dust devil survey and Mastcam solar tau. Finally, just before handing things over to Monday’s plan, we take additional atmospheric observations in the early morning.

Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory

Share

Details

Last Updated
Jul 23, 2024

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4295-4296: A Martian Moon and Planet Earth
      Using an onboard focusing process, the Mars Hand Lens Imager (MAHLI) aboard NASA’s Mars rover Curiosity created this product by merging two to eight images previously taken by the MAHLI, which is located on the turret at the end of the rover’s robotic arm. Curiosity performed the merge on Sept. 4, 2024, at 06:30:48 UTC — sol 4294, or Martian day 4,294 of the Mars Science Laboratory mission. The onboard focus merge is sometimes performed on images acquired the same sol as the merge, and sometimes using pictures obtained earlier. Focus merging is a method to make a composite of images of the same target acquired at different focus positions to bring as many features as possible into focus in a single image. The MAHLI focus merge also serves as a means to reduce the number of images sent back to Earth. Each focus merge produces two images: a color, best-focus product and a black-and-white image that scientists can use to estimate focus position for each element of the best-focus product. So up to eight images can be merged, but the number of images returned to Earth is two. NASA/JPL-Caltech/MSSS Earth planning date: Wednesday, Sept. 4, 2024
      Today’s two-sol plan contains the usual science blocks filled with contact science and remote science to observe and assess the geology surrounding us. However, the Mastcam team is hoping to capture a special celestial event above the Martian skyline as one of Mars’ moons, Phobos, will be in conjunction with Earth on the evening of the first sol of this plan. So everyone look up, and smile for the camera!
      Coming back to our beautiful workspace, in this plan there is a focus on targeting the different colors and tones we can see in the bedrock with our suite of instruments. In the image above we can see some of these varying tones — including gray areas, lighter-toned areas, and areas of tan-colored bedrock — with an image from the MAHLI instrument, Curiosity’s onboard hand lens.
      APXS is targeting “Campfire Lake,” a lighter-toned area, and “Gemini,” a more gray-toned area situated in front of the rover. MAHLI is taking a suite of close-up images of these targets too. ChemCam is then taking two LIBS measurements of “Crazy Lake” and “Foolish Lake,” both of which appear to have lighter tones. Mastcam is documenting this whole area with a workspace mosaic and an 8×2 mosaic of “Picture Puzzle,” named after the rock in the image above that was taken during the previous plan. Mastcam will also be capturing a 6×3 mosaic of an outcrop named “Outguard Spire” that has an interesting gray rim. Looking further afield, ChemCam has planned a long-distance RMI image of the yardang unit and Navcam is taking a suprahorizon movie and dust-devil survey for our continued observations of the atmosphere to round out this plan.
      Written by Emma Harris, Graduate Student at Natural History Museum, London
      Share








      Details
      Last Updated Sep 05, 2024 Related Terms
      Blogs Explore More
      2 min read Sol 4294: Return to McDonald Pass


      Article


      15 hours ago
      3 min read Sols 4291-4293: Fairview Dome, the Sequel


      Article


      16 hours ago
      3 min read Behind the Scenes at the 2024 Mars 2020 Science Team Meeting
      The Mars 2020 Science Team meets in Pasadena for 3 days of science synthesis


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4291-4293: Fairview Dome, the Sequel
      This image was taken by Left Navigation Camera aboard NASA’s Mars rover Curiosity on sol 4289 — Martian day 4,289 of the Mars Science Laboratory mission — on Aug. 30, 2024 at 03:48:38 UTC. To the left of the crescent-shaped formation in the low-center part of the image, a wheel track is visible along with an “intriguing” batch of shattered rock where Curiosity had previously driven. NASA/JPL-Caltech Earth planning date: Friday, Aug. 30, 2024
      Our backwards drive to “McDonald Pass” got hung up on the steep slopes of “Fairview Dome,” but unlike a lot of movie sequels, our inadvertent return visit to Fairview Dome was at least as good as the original. We took full advantage of the chance to investigate this bedrock rise within Gediz Vallis with multiple contact and remote science targets. 
      MAHLI and APXS paired up on two different DRT targets of more- and less-nodular spots of bedrock at “Lower Boy Scout Lake” and “Upper Boy Scout Lake.” You can see in the Navcam image above that just beyond the bedrock slab we stopped on, there is a wheel track and a shattered batch of rock. We crushed that bit of rock as we drove backward and were left with a great view of it, including some intriguing bright rock interiors. ChemCam targeted one of those bright rock faces at “North Palisade” and Mastcam acquired a mosaic across the whole field of broken rocks at “Ritter-Banner Saddle.” The churned-up sand of Ritter-Banner Saddle also made for a convenient change detection target as we keep our eye on the wind effects of a potential dust storm rising on Mars. ChemCam had two other opportunities for LIBS analyses at a nodular bedrock target called “Regulation Peak,” and another intriguing vertical rock face with strong color differences called “Simmons Peak.” ChemCam used RMI mosaics to image a collection of higher albedo rocks in Gediz Vallis at a site called “Buckeye Ridge.” Mastcam planned a mosaic of a different part of Gediz Vallis that is in the direction we are driving next, which will help plot those drives and also give us some insight into the boulders strewn about that part of the valley. Closer to the rover, the “Outguard Spire” target was of interest for Mastcam imaging because of its color zonation — the way colors are distributed across different areas, or zones, of the rock. It’s the kind of zonation we intend to study at McDonald Pass. The trough of sand at the “Whitney-Russell Pass” target was of interest for its potential insights into how bedrock blocks break up on Mars.
      Monitoring the potential rise of a dust storm meant that the plan was busy with environmental observations. ChemCam acquired a passive sky observation, Navcam collected two rounds of dust-devil imaging, cloud movies, and atmospheric dust measurements, Mastcam acquired multiple atmospheric dust measurements, and REMS ran in longer blocks throughout each sol than it does in normal weather conditions. Dust or not, RAD and DAN passive were planned regularly through the three sols of the plan.
      Written by Michelle Minitti, Planetary Geologist at Framework
      Share








      Details
      Last Updated Sep 05, 2024 Related Terms
      Blogs Explore More
      2 min read Sol 4294: Return to McDonald Pass


      Article


      9 mins ago
      3 min read Behind the Scenes at the 2024 Mars 2020 Science Team Meeting
      The Mars 2020 Science Team meets in Pasadena for 3 days of science synthesis


      Article


      6 days ago
      4 min read Sols 4289-4290: From Discovery Pinnacle to Kings Canyon and Back Again


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      Sols 4289-4290: From Discovery Pinnacle to Kings Canyon and Back Again
      This image shows the workspace in front of NASA’s Mars rover Curiosity, taken by the Left Navigation Camera aboard the rover on sol 4287 — Martian day 4,287 of the Mars Science Laboratory mission — on Aug. 28, 2024, at 02:23:27 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Aug. 28 2024
      We are back … almost, anyways. Today’s parking location is very close to where we parked on sol 4253, and in an area near one of the previous contact science targets “Discovery Pinnacle.” You can read in this blog post that most of the team, this blogger included, was in Pasadena for our team meeting when we were last in this area. That was July and Curiosity was about to turn 12 on Mars. Coming back is a very rare occasion and is always planned carefully. Once or twice during the last 12 years it happened because we saw something “in the rear mirror.” One of the examples is the target “Old Soaker,” where we spotted mud cracks in the images from a previous parking position, and promptly went back because this was such an important discovery. At other times it was carefully planned, such as the “walkabout” at “Pink Cliffs,” which you can watch in this video from as long back as Earth year 2015. In the past few planning cycles, it’s more of the latter as we made our way from Discovery Pinnacle, where we were on sol 4253, “Just passing through” “Russell Pass” and arriving at “Kings Canyon,” our drill location, which we reached on sol 4257. You can follow all the action of the drilling at Kings Canyon on the blogs. It took a while — it always does — because it’s an activity with many steps and investigations to complete. We actually celebrated Curiosity’s 12th birthday at Kings Canyon! We departed on sol 4283, came back via “Cathedral Peak,” and are now near the Discovery Pinnacle location again. After that little walkabout through the history of (some) of Curiosity’s walkabouts, especially the very last one, let’s look at today’s plan.
      It is a pretty normal two-sol plan, with a one-hour science block before we drive away from this location. We were greeted by a nicely flat surface, and the engineers informed us that we have all six wheels firmly on flat and stable ground. That’s always a relief, because only then can we use the arm. That nice piece of flat rock Curiosity is so firmly parked on became our science target …well, mostly. Some of the little pebbles on the surface attracted our attention, too. The very eagle-eyed can spot a small white spot in the image above. It’s right between the arm and the rover itself, about where the C is written. That’s a rock that we likely broke up with our wheel and that has a very white part to it. We called it “Thousand Island Lake,” and will image it with MAHLI. APXS is investigating a target called “Eichorn Pinnacle,” squarely on the big flat area. LIBS is also making the most of the large target underneath and in front of us, investigating the target “Nine Lakes Basin.”
      In recent blogs you will have read about the dust-storm watch making the atmospheric investigations even more important, so we don’t miss any changes. We are looking for dust devils, atmospheric opacity, and are of course monitoring the weather throughout the plan.
      Our drive will hopefully — if Mars agrees — be a long one, and we will also plan an activity that we call MARDI sidewalk. That’s when we take very frequent pictures with the MARDI instrument while driving. This results in a long strip of images nicely showing the nature of the terrain the rover has driven over. This is in addition to the MARDI single frame we are taking every time the rover stops. I often get the question, why are we taking an image just downwards whenever the rover stops? Well, humans are easy to bias toward the outliers, toward the things that look special, and of course the Curiosity team is no exception. For some things this is great, because it allows for the discoveries of new things. But it doesn’t provide an unbiased overview. That’s what MARDI does: It always points down and reliably records the terrain under the rover. We don’t have to do anything but put the commands for that one image into our plan after the drive — something that’s pretty routine after 12 years now!
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Aug 29, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4287-4288: Back on the Road


      Article


      1 day ago
      3 min read Perseverance Kicks off the Crater Rim Campaign!
      Perseverance is officially headed into a new phase of scientific investigation on the Jezero Crater…


      Article


      2 days ago
      4 min read Sols 4284–4286: Environmental Science Extravaganza


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4287-4288: Back on the Road
      This image was taken by Mast Camera (Mastcam) aboard NASA’s Mars rover Curiosity on Sol 4284 — Martian day 4,284 of the Mars Science Laboratory mission — on Aug. 24, 2024, at 20:32:43 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Aug. 26, 2024
      Today’s planning day was a good example of how our team comes together to make quick decisions based on new information and science priorities.
      The original intent of today’s plan was to perform contact science on some interesting bright-toned rubbly rocks in our workspace, seen in the image above. These rocks were just a short bump away from the location of our last sampling campaign and the team had been eyeing them for a few weeks, interested in the details of their composition from the APXS instrument and their morphology from MAHLI. However, before we ever unstow our robotic arm to perform these types of observations, our Rover Planners and Surface Property Scientists perform a “Slip Risk Assessment.” This assessment is used to determine whether the rover’s wheels are stable on the ground so that we can safely unstow the heavy robotic arm and place the arm-mounted instruments very close to the surface. In today’s case, the team determined that it was not safe to unstow our arm. If the science team was interested in observing the bright-toned rocks in our workspace, it would require adjusting the rover’s position and performing the observations in the next planning cycle, impacting our overall mission timeline. 
      With this information on hand, the science team had an excellent discussion, quickly assessing the pros and cons of sticking around with a small adjustment to get contact science at this location in our next plan, or continuing down the road to our next waypoint. I always enjoy listening to these discussions; they are led by our Long-Term Planners and provide the opportunity for all science advocates to voice their opinions. In today’s case, the science team decided to move along. This location had been opportunistic to begin with and more juicy science targets are certainly to come. Time is a precious resource to us, and we often consider the timeline cost of any given science observation, weighing the relative science benefit to the cost of planning cycles.
      So given this reworking of priorities, today’s two-sol plan was adjusted to include targeted science on the first sol before driving away towards our next waypoint, followed by another sol with untargeted science. Our drive takes us about 25 meters north and we’ll pause part way through the drive to take Mastcam imaging of some bright nodular-appearing rocks to examine their relationship to other rock types.
      Between the two sols of this plan, we’ll perform an empty-cell analysis of the CheMin cell used for our last sampling campaign, to determine if we have dumped all the sample out of it for future use with another sampling campaign. As always, we performed our normal environmental monitoring observations.
      Onward, Curiosity!
      Written by Elena Amador-French, Science Operations Coordinator at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Aug 28, 2024 Related Terms
      Blogs Explore More
      3 min read Perseverance Kicks off the Crater Rim Campaign!
      Perseverance is officially headed into a new phase of scientific investigation on the Jezero Crater…


      Article


      11 hours ago
      4 min read Sols 4284–4286: Environmental Science Extravaganza


      Article


      2 days ago
      3 min read Sols 4282-4283: Bumping Away from Kings Canyon


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By USH
      Time slips; a curious phenomena where individuals unexpectedly find themselves transported across time, be it minutes, days, or even years, without any intention or control over the experience. Those who experience time slips often report feeling as though they’ve been transported to a different point in time. 

      Imagine walking down a familiar street when suddenly everything changes. The asphalt beneath your feet transforms into cobblestone, cars vanish, replaced by horse-drawn carriages. The air fills with the scent of coal smoke and horse manure. 
      People in Victorian-era clothing hurry past, glancing at you suspiciously. Panic sets in as you realize you're no longer in your own time. Then, just as quickly, you're back in the present day. 
      You’ve just experienced a time slip, and you’re not alone. 
      Thousands of people worldwide have reported similar experiences, brief moments of traveling through time, witnessing scenes from the past or future, only to return to the present moment. 
      But what exactly are these experiences? Are they vivid hallucinations, or could time slips be real, offering us glimpses into the true nature of time and reality? 
      Some theories suggest that if a portal existed between our universe and a parallel one, time slips could theoretically occur. However, it’s crucial to note that there is no concrete evidence to support the idea that we live in a multiverse. 
      In the video below, we’ll explore a few famous time slip stories and the scientific theories that might help explain these mysterious events.
        View the full article
  • Check out these Videos

×
×
  • Create New...