Jump to content

NASA’s 21st Northrop Grumman Mission Launches Scientific Studies to Station


NASA

Recommended Posts

  • Publishers

NASA and its international partners are sending scientific investigations to the International Space Station on Northrop Grumman’s 21st commercial resupply services mission. Flying aboard the company’s Cygnus spacecraft are tests of water recovery technology and a process to produce stem cells in microgravity, studies of the effects of spaceflight on microorganism DNA and liver tissue growth, and live science demonstrations for students. The mission is scheduled to launch from Cape Canaveral Space Force Station in Florida by early August.

Read more about some of the research making the journey to the orbiting laboratory:

Testing materials for packed systems

Packed bed reactors are systems that use materials such as pellets or beads “packed” inside a structure to increase contact between different phases of fluids, such as liquid and gas. These reactors are used for various applications including water recovery, thermal management, and fuel cells. Scientists previously tested the performance in space of glass beads, Teflon beads, a platinum catalyst, and other packing materials. Packed Bed Reactor Experiment: Water Recovery Series evaluates gravity’s effects on eight additional test articles.

Results could help optimize the design and operation of packed bed reactors for water filtration and other systems in microgravity and on the Moon and Mars. Insights from the investigation also could lead to improvements in this technology for applications on Earth such as water purification and heating and cooling systems.

A suitcase-sized piece of equipment sitting on a blue tabletop has a copper-colored frame and a metal box on the closest end with multiple nozzles and cords. A clear tube the length of the hardware is filled with small white beads. A person wearing a white lab coat and blue gloves is visible from the shoulders down behind the equipment.
Hardware for the packed bed water recovery reactor experiment. The packing media is visible in the long clear tube.
NASA

Giving science a whirl

STEMonstrations Screaming Balloon uses a balloon, a penny, and a hexagonal nut (the kind used to secure a bolt) for a NASA STEMonstration performed and recorded by astronauts on the space station. The penny and the nut are whirled separately inside an inflated balloon to compare the sounds they make. Each STEMonstration illustrates a different scientific concept, such as centripetal force, and includes resources to help teachers further explore the topics with their students.

The left side of this image shows the space station above a cloud-covered Earth. The right side shows Dominick, wearing a blue t-shirt and khaki pants, hanging upside-down from a hatch, and Epps, wearing a black polo with an Expedition 70 patch, facing the camera. The STEMonstrations logo is on the left top of the image.
NASA astronauts Matthew Dominick and Jeanette Epps prepare for a STEMonstration on the International Space Station.
NASA

More, better stem cells

In-Space Expansion of Hematopoietic Stem Cells for Clinical Application (InSPA-StemCellEX-H1) continues testing a technology to produce human hematopoietic stem cells (HSCs) in space. HSCs give rise to blood and immune cells and are used in therapies for patients with certain blood diseases, autoimmune disorders, and cancers.

The investigation uses a system called BioServe In-space Cell Expansion Platform, or BICEP, which is designed to expand HSCs three hundredfold without the need to change or add new growth media, according to Louis Stodieck, principal investigator at the University of Colorado Boulder. “BICEP affords a streamlined operation to harvest and cryopreserve cells for return to Earth and delivery to a designated medical provider and patient,” said Stodieck.

Someone in the United States is diagnosed with a blood cancer such as leukemia about every three minutes. Treating these patients with transplanted stem cells requires a donor-recipient match and long-term repopulation of transplanted stem cells. This investigation demonstrates whether expanding stem cells in microgravity could generate far more continuously renewing stem cells.

“Our work eventually could lead to large-scale production facilities, with donor cells launched into orbit and cellular therapies returned to Earth,” said Stodieck.

 

NASA astronaut and Expedition 69 Flight Engineer Frank Rubio works in the Kibo laboratory module's Life Sciences Glovebox servicing stem cell samples for the StemCellEX-H Pathfinder study. The biotechnology investigation seeks to improve therapies for blood diseases and cancers such as leukemia.
NASA astronaut Frank Rubio works on the first test of methods for expanding stem cells in space, StemCellEX-H Pathfinder. The InSPA-StemCellEX-H1 investigation continues this work.
NASA

DNA repair in space

Rotifer-B2, an ESA (European Space Agency) investigation, explores how spaceflight affects DNA repair mechanisms in a microscopic bdelloid rotifer, Adineta vaga. These tiny but complex organisms are known for their ability to withstand harsh conditions, including radiation doses 100 times higher than human cells can survive. The organisms are dried, exposed to high radiation levels on Earth, and rehydrated and cultured in an incubator on the station.

“Previous research indicates that rotifers repair their DNA in space with the same efficiency as on Earth, but that research provided only genetic data,” said Boris Hespeels, co-investigator, of Belgium’s Laboratory of Evolutionary Genetics and Ecology. “This experiment will provide the first visual proof of survival and reproduction during spaceflight,” said Hespeels

Results could provide insights into how spaceflight affects the rotifer’s ability to repair sections of damaged DNA in a microgravity environment, and could improve the general understanding of DNA damage and repair mechanisms for applications on Earth.

A cell phone-sized blue box with a barcode label and a white button floats in the space station. A closed laptop and several storage boxes are visible in the background and a black camera is mounted in the foreground.
A culture chamber for the Rotifer-B2 investigation aboard the International Space Station.
NASA

Growing liver tissue

Maturation of Vascularized Liver Tissue Construct studies the development in space of bioprinted liver tissue constructs that contain blood vessels. Constructs are tissue samples grown outside the body using bioengineering techniques. Scientists expect the microgravity environment to allow improved cellular distribution throughout tissue constructs.

“We are especially keen on accelerating the development of vascular networks,” said James Yoo, principal investigator, at the Wake Forest Institute of Regenerative Medicine. “The experimental data from microgravity will provide valuable insights that could enhance the biomanufacturing of vascularized tissues to serve as building blocks to engineer functional organs for transplantation.”

This image has three boxes. In the first is a white cube on a blue background with sides about a half-inch long and multiple open spaces like Swiss cheese. The second box shows a solid, reddish gelatinous cube on a white background. The third has a diagram of a small tissue chamber with three cells, a cylindrical reddish medium container, a black square micropump, and a round black bubble trap all connected in a loop.
Image A shows a vascularized tissue construct with interconnected channels, and image B shows a bioprinted human liver tissue construct fabricated with a digital light projection printer. Image C shows the tissue construct connected to a perfusion system, a pump that moves fluid through it.
Wake Forest Institute for Regenerative Medicine.

This mission also delivers plants for the APEX-09 investigation, which examines plant responses to stressful environments and could inform the design of bio-regenerative support systems on future space missions.

Melissa Gaskill
International Space Station Research Communications Team
NASA’s Johnson Space Center

Download high-resolution photos and videos of the research mentioned in this article.

Search this database of scientific experiments to learn more about those mentioned in this article.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      JAXA (Japan Aerospace Exploration Agency) researchers examined the structures of four titanium-based compounds solidified in levitators in microgravity and on the ground and found that the internal microstructures were generally similar. These results could support development of new materials for use in space manufacturing.

      To produce glass or metal alloys on Earth, raw materials are placed into a container and heated. But reactions between the container and the materials can cause imperfections. The JAXA Electrostatic Levitation Furnace can levitate, melt, and solidify materials without a container. The facility enables measurement of the thermophysical properties of high temperature melts and could accelerate development of innovative materials such as heat resistant ceramics for use in the aerospace and energy industries.
      JAXA (Japan Aerospace Exploration Agency) astronaut Akihiko Hoshide works with the Electrostatic Levitation Furnace.European Space Agency/Thomas Pesquet Satellite 3D imaging of a Peruvian tropical forest demonstrated that measuring leaf traits with remote sensing may provide more accurate predictions of biomass production than structure data such as tree height. Carbon stored or sequestered in forests can help offset emissions that cause climate change, and improved estimates of tropical forest biomass could allow researchers to better evaluate these ecosystems and their offset contributions.

      Global Ecosystem Dynamics Investigation (GEDI) provides high-resolution global observations of Earth’s forests and topography. These observations provide information on carbon and water cycling processes, biodiversity, and habitat, including quantifying carbon stored in vegetation and the potential for future carbon storage. The researchers suggest that estimates of tropical forest biomass could be further improved with data from new satellite missions and by integrating GEDI with dynamic vegetation models that include trait data.

      Learn more from this video and this article.
      The refrigerator-sized Global Ecosystem Dynamics Investigation instrument on the exterior of the International Space Station. NASA/Nick Hague Research indicates that refractive eye surgery is safe, effective, and suitable for astronauts. The study documented stable vision in two astronauts who, a few years prior to flight, underwent photorefractive keratectomy (PRK) and laser-assisted in situ keratomileusis (LASIK), respectively. These visual correction procedures can reduce the logistical complications of wearing glasses or contact lenses in space.

      International Space Station Medical Monitoring collects health data from crew members before, during, and after spaceflight.  The medical evaluation requirements, including vision assessment, apply to all crew members and are part of efforts by all international partners to maintain crew health, ensure mission success, and enable crew members to return to normal life on Earth after their missions.
      NASA astronauts Terry Virts (bottom) and Scott Kelly (top) perform eye exams as part of ongoing studies into crew vision health. NASA JAXA researchers report that accurately assessing the velocity of airflow in front of a spreading flame makes it possible to predict the flammability of thin, flat materials in microgravity. These results mean it could be possible to use ground tests to predict the flammability of solid materials and thus ensure fire safety in spacecraft and space habitations.

      The JAXA Fundamental Research on International Standard of Fire Safety in Space – Base for Safety of Future Manned Missions (FLARE) investigation tested the flammability of various solid materials in different configurations, including filter paper. Microgravity significantly affects combustion phenomena such as the spread of flame over solid materials; while flames cannot spread over solid materials under low-speed oxygen flow in Earth’s gravity, they can in microgravity due to the lack of buoyancy. Testing of the flammability of materials for spacecraft previously has not considered the effect of gravity, and results from this investigation could address this issue, significantly improving fire safety on future exploration missions.
      JAXA astronaut Satoshi Furukawa sets up hardware for the Fundamental Research on International Standard of Fire Safety in Space – Base for Safety of Future Manned Missions investigation. NASA/Jasmin MoghbeliView the full article
    • By NASA
      Europa Clipper: NASA’s Mission to Jupiter's Ocean Moon (Mission Trailer)
    • By NASA
      The International Space Station is pictured from the SpaceX Crew Dragon Endeavour during a fly around.NASA NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov are headed to the International Space Station for the agency’s SpaceX Crew-9 mission in September. Once on station, these crew members will support scientific investigations that include studies of blood clotting, effects of moisture on plants grown in space, and vision changes in astronauts.

      Here are details on some of the work scheduled during the Crew-9 expedition:

      Blood cell development in space
      Megakaryocytes Orbiting in Outer Space and Near Earth (MeF1) investigates how environmental conditions affect the development and function of megakaryocytes and platelets. Megakaryocytes, large cells found in bone marrow, and platelets, pieces of these cells, play important roles in blood clotting and immune response.

      “Understanding the development and function of megakaryocytes and platelets during long-duration spaceflight is crucial to safeguarding the health of astronauts,” said Hansjorg Schwertz, principal investigator, at the University of Utah. “Sending megakaryocyte cell cultures into space offers a unique opportunity to explore their intricate differentiation process. Microgravity also may impact other blood cells, so the insights we gain are likely to enhance our overall comprehension of how spaceflight influences blood cell production.”

      Results could provide critical knowledge about the risks of changes in inflammation, immune responses, and clot formation in spaceflight and on the ground.
      Scanning electron-microscopy image of human platelets prior to launch to the International Space Station.University of Utah/Megakaryocytes PI Team Patches for NICER
      The Neutron Star Interior Composition Explorer (NICER) telescope on the exterior of the space station measures X-rays emitted by neutron stars and other cosmic objects to help answer questions about matter and gravity.

      In May 2023, NICER developed a “light leak” that allows sunlight to interfere with daytime measurements. Special patches designed to cover some of the damage will be installed during a future spacewalk, returning the instrument to around-the-clock operation.

      “This will be the fourth science observatory and first X-ray telescope in orbit to be repaired by astronauts,” said principal investigator Keith Gendreau at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In just a year, we diagnosed the problem, designed and tested a solution, and delivered it for launch. The space station team — from managers and safety experts to engineers and astronauts — helped us make it happen. We’re looking forward to getting back to normal science operations.”
      This view shows NICER’s 56 X-ray concentrators. Astronauts plan to cover some of them with special patches on a future spacewalk. NASA Vitamins for vision
      Some astronauts experience vision changes, a condition called Spaceflight-Associated Neuro-ocular Syndrome. The B Complex investigation tests whether a daily B vitamin supplement can prevent or mitigate this problem and assesses how genetics may influence individual response.

      “We still do not know exactly what causes this syndrome, and not everyone gets it,” said Sara Zwart, principal investigator, at the University of Texas Medical Branch, Houston. “It is likely many factors, and biological variations that make some astronauts more susceptible than others.”

      One such variation could be related to a metabolic pathway that requires B vitamins to function properly. Inefficiencies in this pathway can affect the inner lining of blood vessels, resulting in leaks that may contribute to vision changes. Providing B vitamins known to affect blood vessel function positively could minimize issues in genetically at-risk astronauts.

      “The concept of this study is based on 13 years of flight and ground research,” Zwart said. “We are excited to finally flight test a low-risk countermeasure that could mitigate the risk on future missions, including those to Mars.”
      NASA astronaut Mark Vande Hei conducts a vision exam on the International Space StationNASA Watering the space garden
      As people travel farther from Earth for longer, growing food becomes increasingly important. Scientists conducted many plant growth experiments on the space station using its Veggie hardware, including Veg-01B, which demonstrated that ‘Outredgeous’ red romaine lettuce is suitable for crop production in space.

      Plant Habitat-07 uses this lettuce to examine how moisture conditions affect the nutritional quality and microbial safety of plants. The Advanced Plant Habitat controls humidity, temperature, air, light, and soil moisture, creating the precise conditions needed for the experiment.

      Using a plant known to grow well in space removes a challenging variable from the equation, explained Chad Vanden Bosch, principal investigator at Redwire, and this lettuce also has been proven to be safe to consume when grown in space.

      “For crews building a base on the Moon or Mars, tending to plants may be low on their list of responsibilities, so plant growth systems need to be automated,” Bosch said. “Such systems may not always provide the perfect growing conditions, though, so we need to know if plants grown in suboptimal conditions are safe to consume.”
      This preflight image shows lettuce grown under control (left) and flood (right) moisture treatments. Plant Habitat-07 team Melissa Gaskill
      International Space Station Research Communications Team
      NASA’s Johnson Space Center
      Search this database of scientific experiments to learn more about those mentioned in this article.
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      Space Station Research and Technology
      Station Benefits for Humanity
      Humans In Space
      View the full article
    • By NASA
      The Soyuz rocket launches to the International Space Station with Expedition 72 crew members: NASA astronaut Don Pettit, Roscosmos cosmonauts Alexey Ovchinin, and Ivan Vagner, onboard, Wednesday, Sept. 11, 2024, at the Baikonur Cosmodrome in Kazakhstan. Credit: NASA/Bill Ingalls NASA astronaut Don Pettit, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, arrived at the International Space Station Wednesday, bringing its number of residents to 12 for the 13-day handover period.

      After a two-orbit, three-hour journey to the station, the Roscosmos Soyuz MS-26 spacecraft automatically docked to the orbiting laboratory’s Rassvet module at 3:32 p.m. EDT. The spacecraft launched at 12:23 p.m. EDT (9:23 p.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      NASA’s coverage of hatch opening will stream at 5:30 p.m. on NASA+, the NASA app, YouTube, and the agency’s website. Hatch opening is scheduled to begin at 5:50 p.m. Learn how to stream NASA content through a variety of platforms, including social media.

      Once aboard, the trio will join Expedition 71 crew members, including NASA astronauts Tracy C. Dyson, Mike Barratt, Matthew Dominick, Jeanette Epps, Butch Wilmore, and Suni Williams, as well as Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko. Expedition 72 will begin Monday, Sept. 23, upon the departure of Dyson, Chub, and off-going station commander Kononenko, completing a six-month stay for Dyson and a year-long expedition for Chub and Kononenko.

      Pettit, Ovchinin, and Vagner will spend approximately six months aboard the orbital outpost advancing scientific research as Expedition 71/72 crew members before returning to Earth in the spring of 2025. This is Pettit and Ovchinin’s fourth spaceflight and Vagner’s second.

      During Expedition 72, two new crews will arrive aboard the space station, including NASA’s SpaceX Crew-9 launching in September, followed by Crew-10, scheduled for launch in February 2025.  

      Follow Pettit on X throughout his mission and get the latest space station crew news on Instagram, Facebook, and X.

      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      View the full article
    • By NASA
      NASA/Alberto Bertolin, Bradley Reynolds Immerse yourself in the future of deep space science exploration and download a 3D model of Gateway. Click, drag, and explore the exterior of the lunar space station from multiple angles.
      Launch the 3D Model International teams of astronauts will use Gateway, humanity’s first space station to orbit the Moon, to explore the scientific mysteries of deep space. Gateway is part of the Artemis campaign to return humans to the lunar surface for scientific discovery and chart a path for the first human missions to Mars.
      View the full article
  • Check out these Videos

×
×
  • Create New...