Jump to content

Seed Funding Proposals Due November 19 This Year!


NASA

Recommended Posts

  • Publishers

Since it began in 2020, NASA’s Citizen Science Seed Funding Program (CSSFP) has helped twenty-four new NASA citizen science projects get off the ground. This one-year funding opportunity aims to expand the pool of professional scientists who use citizen science techniques in their science investigations. We’d like to remind you about two key changes to the CSSFP program this year!

First, we heard that researchers could make better use of seed funding if it arrived in time to enable work during the summer — a crucial season for students, faculty, and interns.  To address this need, NASA is shifting the submission and review process to earlier in the year. The planning start date for CSSFP investigations for this next round is now May 1, 2025! Of course, an earlier start date means an earlier due date, so this year’s CSSFP proposals will be due November 19, 2024. Proposers are also asked to submit a Notice of Intent (optional) by October 1, 2024 to aid in planning the review panels. 

Second, if you are a current CSSFP grant recipient, you have the opportunity to request a No Cost Extension, which will allow you to continue spending your remaining funding during a second year. However, please note: the NASA Shared Services Center will reject late requests! All no-cost extension requests must be received more than 10 calendar days prior to the end date of your grant’s period of performance. Please check that date and be sure to submit your No Cost Extension requests more than 10 days prior.

We’re excited to receive your proposals and can’t wait to help you do NASA science with fantastic volunteers from around the world!

Previous Awards

2023 CSSFP Awards

2022 CSSFP Awards

2021 CSSFP Awards

seed-funding-proposals.png?w=1510
NASA’s Citizen Science Seed Funding Program can help your project grow–like the seedlings in NASA’s Growing Beyond Earth Citizen Science project!
Credit: Growing Beyond Earth

Share

Details

Last Updated
Jul 22, 2024

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      In the remote wilderness of the Shoria Mountains in southern Siberia, a long-hidden secret has remained untouched for millennia. Far from the reach of modern civilization, a discovery was made that would challenge our understanding of ancient human history. 

      In 2013, a team of 19 researchers, led by Georgy Sidorov, embarked on an expedition to explore this mysterious region. Their destination was Gora Shoria, a mountain towering 3,600 feet above sea level in a remote part of Russia. Intrigued by reports of strange megalithic structures, the team ventured into this secluded terrain. 
      What they found was extraordinary: an immense super-megalith dating back roughly 100,000 years that defied conventional history. These massive stone blocks, later known as the Gornaya Shoria Megaliths, appeared to be made of granite, featuring flat surfaces and precise right angles. The most astounding detail was the weight of the stones, exceeding 3,000 tons—making them the largest megaliths ever discovered. 
      The arrangement of these granite blocks suggested a deliberate design, far beyond what could be explained by natural formations. The blocks were carefully stacked, reaching a height of approximately 140 feet. This raised profound questions: how were such massive stones carved, transported, and assembled in this remote and rugged landscape? 
      Some researchers have speculated about the existence of a pre-flood civilization, a sophisticated society wiped out by a cataclysmic event. 
      Also a deep, narrow vertical shaft was uncovered. The shaft, lined with parallel stone slabs, appeared to be human-made. 
      The walls of the shaft were straight and polished, descending 40 meters (around 130 feet) before opening into a vast underground hall, 36 meters (around 118 feet) high. These walls were constructed from large megalithic blocks, perfectly fitted with minimal gaps. Some of the stones resembled columns, reinforcing the idea of deliberate design. The full explored length of the shaft spanned over 100 meters (approximately 350 feet). 
      The precision and scale of this structure left no doubt that it was an artificial creation of immense proportions. The polished walls and massive blocks bore a striking resemblance to the shafts within the Great Pyramid of Khufu in Egypt, suggesting a level of architectural sophistication that defies conventional explanations.  
      Speculation abounds regarding the shaft’s original purpose. Some believe it served an advanced technological function or was part of a larger, undiscovered structure. The exploration team took over an hour to reach the bottom of the shaft, which required significant climbing expertise and endurance. It is believed that additional chambers and channels, still unexplored, may lie even deeper underground. 
      How could these gigantic 200-ton stone blocks have been assembled with such accuracy, deep underground? What kind of technology was used to construct the shaft and underground chamber?  
      Some researchers have speculated that it may have been part of an ancient factory, a seismological research device, or even an energy generator. Others believe it was the underground portion of a long-lost pyramid that once stood on the surface of the mountain. 
      Despite differing theories, we may wonder what ancient forces or lost civilizations left their mark on this remote corner of the world?
        View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Student Launch, a STEM competition, officially kicks off its 25th anniversary with the 2025 handbook. By Wayne Smith
      NASA’s Student Launch competition kicks off its 25th year with the release of the 2025 handbook, detailing how teams can submit proposals by Wednesday, Sept. 11, for the event scheduled next spring near NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      Student Launch is an annual competition challenging middle school, high school, and college students to design, build, test, and launch a high-powered amateur rocket with a scientific or engineering payload. After a team is selected, they must meet documentation milestones and undergo detailed reviews throughout the school year.
      Each year, NASA updates the university payload challenge to reflect current scientific and exploration missions. For the 2025 season, the payload challenge will again take inspiration from the Artemis missions, which seek to land the first woman and first person of color on the Moon.
      As Student Launch celebrates its 25th anniversary, the payload challenge will include “reports” from STEMnauts, non-living objects representing astronauts. The 2024 challenge tasked teams with safely deploying a lander mid-air for a group of four STEMnauts using metrics to support a survivable landing. The lander had to be deployed without a parachute and had a minimum weight limit of five pounds.
      “This year, we’re shifting the focus to communications for the payload challenge,” said John Eckhart, technical coordinator for Student Launch at Marshall. “The STEMnaut ‘crew’ must relay real-time data to the student team’s mission control. This helps connect Student Launch with the Artemis missions when NASA lands astronauts on the Moon.”
      Thousands of students participated in the 2024 Student Launch competition – making up 70 teams representing 24 states and Puerto Rico. Teams launched their rockets to an altitude between 4,000 and 6,000 feet, while attempting to make a successful landing and executing the payload mission. The University of Notre Dame was the overall winner of the 2024 event, which culminated with a launch day open to the public.
      Student Launch began in 2000 when former Marshall Director Art Stephenson started a student rocket competition at the center. It started with just two universities in Huntsville competing – Alabama A&M University and the University of Alabama in Huntsville – but has continued to soar. Since its inception, thousands of students have participated in the agency’s STEM competition, with many going on to a career with NASA.
      “This remarkable journey, spanning a quarter of a century, has been a testament to the dedication, ingenuity, and passion of countless students, educators, and mentors who have contributed to the program’s success,” Eckhart said. “NASA Student Launch has been at the forefront of experiential education, providing students from middle school through university with unparalleled opportunities to engage in real-world engineering and scientific research. The program’s core mission – to inspire and cultivate the next generation of aerospace professionals and space explorers – has not only been met but exceeded in ways we could have only dreamed of.”
      To encourage students to pursue degrees and careers in STEM (science, technology, engineering, and math), Marshall’s Office of STEM Engagement hosts Student Launch, providing them with real-world experiences. Student Launch is one of NASA’s nine Artemis Student Challenges – a variety of activities that expose students to the knowledge and technology required to achieve the goals of Artemis. 
      In addition to the NASA Office of STEM Engagement’s Next Generation STEM project, NASA Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space and Bastion Technologies provide funding and leadership for the competition. 
      “These bright students rise to a nine-month challenge for Student Launch that tests their skills in engineering, design, and teamwork,” said Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region. “They are the Artemis Generation, the future scientists, engineers, and innovators who will lead us into the future of space exploration.”
      For more information about Student Launch, please visit: 
      https://www.nasa.gov/studentlaunch
      Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      taylor.goodwin@nasa.gov
      Share
      Details
      Last Updated Aug 29, 2024 LocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      27 min read The Marshall Star for August 28, 2024
      Article 2 days ago 4 min read NASA Expands Human Exploration Rover Challenge to Middle Schools
      Article 2 days ago 3 min read NASA, Boeing Optimizing Vehicle Assembly Building High Bay for Future SLS Stage Production
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      SpaceWERX Director Arthur Grijalva made the announcement at the conclusion of the panel titled SpaceWERX STRATFI Successes and Selections, at Capital Factory, the home of AFWERX’s Austin hub.

      View the full article
    • By NASA
      Learn Home Celebrate Heliophysics Big… Heliophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   2 min read
      Celebrate Heliophysics Big Year: Free Monthly Webinars on the Sun Touches Everything
      Once a month (usually on the first Tuesday), the Heliophysics Education Community meets online to share knowledge and opportunities. During the Heliophysics Big Year (HBY) – a global celebration of the Sun’s influence on Earth and the entire solar system, beginning with the Annular Solar Eclipse on October 14, 2023, continuing through the Total Solar Eclipse on April 8, 2024, and concluding with the Parker Solar Probe’s closest approach to the Sun in December, 2024 – the meetings are structured to include short presentations by subject matter experts both inside and outside NASA.
      Challenged by the NASA Heliophysics Division to participate in as many Sun-related activities as possible, the NASA Heliophysics Education community has been hosting these short monthly presentations for formal and informal educators, science communicators, and other heliophysics enthusiasts to promote the understanding of heliophysics in alignment with monthly HBY themes. Presenters and team members from the NASA Science Activation program’s NASA Heliophysics Education Activation Team (NASA HEAT) connect these themes with the Framework of Heliophysics Education in mind, mapping them directly to the Next Generation Science Standards (NGSS) – a set of research-based science content standards for grades K–12. Using the three main questions that heliophysicists investigate as a foundation, NASA HEAT cross-references heliophysics topics with the NGSS Disciplinary Core Ideas to create NGSS-aligned “heliophysics big ideas.” These community meetings welcome an average of 30 attendees, but NASA celebrated a record-breaking 234 attendees for the July meeting, which explored the Sun’s impact on physical and mental health.
      Everyone is welcome to participate in upcoming presentations and topics on the following dates at 1 p.m. EDT:
      8/6/24 Youth/Informal Education – NASA PUNCH Mission
      9/02/24 Environment and Sustainability – Solar Sail
      10/15/24 Solar Cycle and Solar Max – National Solar Observatory
      11/19/24 Bonus Science
      12/03/24 Parker’s Perihelion
      Join the Meeting
      NASA HEAT is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Dr. Erin Flynn-Evans of NASA Ames Research Center gave a short presentation of her research on how sunlight affects the behavioral health of astronauts. Share








      Details
      Last Updated Aug 06, 2024 Editor NASA Science Editorial Team Related Terms
      2023 Solar Eclipse 2024 Solar Eclipse Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Heliophysics Opportunities For Educators to Get Involved Parker Solar Probe (PSP) Science Activation Explore More
      4 min read AstroViz: Iconic Pillars of Creation Star in NASA’s New 3D Visualization


      Article


      23 hours ago
      4 min read GLOBE Alumna and Youth for Habitat Program Lead Named Scientist of the Month in Alaska


      Article


      1 week ago
      2 min read PLACES team publishes blog post on NextGenScience Blog


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Johnson Space Center: ORDEM represents the state of the art in orbital debris models intended for engineering analysis. It is a data-driven model, relying on large quantities of radar, optical, in situ, and laboratory measurement data. When released, it was the first software code to include a model for different orbital debris material densities, population models from low Earth orbit (LEO) all the way to Geosynchronous orbit (GEO), and uncertainties in each debris population. 
      ORDEM allows users to compute the orbital debris flux on any satellite in Earth orbit.  This allows satellite designers to mitigate possible orbital debris damage to a spacecraft and its instruments using shielding and design choices, thereby extending the useful life of the mission and its experiments.  The model also has a mode that simulates debris telescope/radar observations from the ground.  Both it and the spacecraft flux mode can be used to design experiments to measure the meteoroid and orbital debris environments. 
      ORDEM is used heavily in the hypervelocity protection community, those that design, build, and test shielding for spacecraft and rocket upper stages. The fidelity of the ORDEM model allows for the optimization of shielding to balance mission success criteria, risk posture, and cost considerations. 
      As both government and civilian actors continue to exploit the space environment for security, science, and the economy, it is important that we track the debris risks in increasingly crowded orbits, in order to minimize damage to these space assets to make sure these missions continue to operate safely.  ORDEM is NASA’s primary tool for computing and mitigating these risks.   
      ORDEM is used by NASA, the Department of Defense, and other U.S. government agencies, directly or indirectly (via the Debris Assessment Software, MSC-26690-1) to evaluate collision risk for large trackable objects, as well as other mission-ending risks associated with small debris (such as tank ruptures or wiring cuts). In addition to the use as an engineering tool, ORDEM has been used by NASA and other missions in the conceptual design phase to analyze the frequency of orbital debris impacts on potential in situ sensors that could detect debris too small to be detected from ground-based assets. 
      Commercial and academic users of ORDEM include Boeing, SpaceX, Northrop Grumman, the University of Colorado, California Polytechnic State University, among many others. These end users, similar to the government users discussed above, use the software to (1) directly determine potential hazards to spaceflight resulting from flying through the debris environment, and (2) research how the debris environment varies over time to better understand what behaviors may be able to mitigate the growth of the environment. 
      The quality and quantity of data available to the NASA Orbital Debris Program Office (ODPO) for the building, verification, and validation of the ORDEM model is greater than for any other entity that performs similar research. Many of the models used by other research and engineering organizations are derived from the models that ODPO has published after developing them for use in ORDEM.   
      ORDEM Team 
      Alyssa Manis  Andrew B, Vavrin  Brent A. Buckalew  Christopher L. Ostrom   Heather Cowardin  Jer-chyi Liou   John H, Seago   John Nicolaus Opiela   Mark J. Matney, Ph.D.  Matthew Horstman   Phillip D. Anz-Meador, Ph.D.  Quanette Juarez   Paula H. Krisko, Ph.D.  Yu-Lin Xu, Ph.D.  Share
      Details
      Last Updated Jul 31, 2024 EditorBill Keeter Related Terms
      Office of Technology, Policy and Strategy (OTPS) View the full article
  • Check out these Videos

×
×
  • Create New...