Jump to content

Sentinel-2C arrives in French Guiana


Recommended Posts

Sentinel-2C arrives in Kourou

The Sentinel-2C satellite, the third Copernicus Sentinel-2 satellite, has arrived at the European spaceport in French Guiana for liftoff on the final Vega rocket in September. Sentinel-2C, like its predecessors, will continue to provide high-quality data for Copernicus – the Earth observation component of the EU Space Programme.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This photo shows the Wide Field Instrument for NASA’s Nancy Grace Roman Space Telescope arriving at the big clean room at NASA’s Goddard Space Flight Center. About the size of a commercial refrigerator, this instrument will help astronomers explore the universe’s evolution and the characteristics of worlds outside our solar system. Unlocking these cosmic mysteries and more will offer a better understanding of the nature of the universe and our place within it.NASA/Chris Gunn The primary instrument for NASA’s Nancy Grace Roman Space Telescope is a sophisticated camera that will survey the cosmos from the outskirts of our solar system all the way out to the edge of the observable universe. Called the Wide Field Instrument, it was recently delivered to the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
      The camera’s large field of view, sharp resolution, and sensitivity from visible to near-infrared wavelengths will give Roman a deep, panoramic view of the universe. Scanning much larger portions of the sky than astronomers can with NASA’s Hubble or James Webb space telescopes will open new avenues of cosmic exploration. Roman is designed to study dark energy (a mysterious cosmic pressure thought to accelerate the universe’s expansion), dark matter (invisible matter seen only via its gravitational influence), and exoplanets (worlds beyond our solar system).
      “This instrument will turn signals from space into a new understanding of how our universe works,” said Julie McEnery, the Roman senior project scientist at Goddard. “To achieve its main goals, the mission will precisely measure hundreds of millions of galaxies. That’s quite a dataset for all kinds of researchers to pull from, so there will be a flood of results on a vast array of science.”
      Technicians inspect NASA’s Nancy Grace Roman Space Telescope’s Wide Field Instrument upon delivery to the big clean room at NASA’s Goddard Space Flight Center.NASA/Chris Gunn About 1,000 people contributed to the Wide Field Instrument’s development, from the initial design phase to assembling it from around a million individual components. The WFI’s design was a collaborative effort between Goddard and BAE Systems in Boulder, Colorado.  Teledyne Imaging Sensors, Hawaii Aerospace Corporation, Applied Aerospace Structures Corporation, Northrop Grumman, Honeybee Robotics, CDA Intercorp, Alluxa, and JenOptik provided critical components. Those parts and many more, made by other vendors, were delivered to Goddard and BAE Systems, where they were assembled and tested prior to the instrument’s delivery to Goddard this month.
      “I am so happy to be delivering this amazing instrument,” said Mary Walker, Roman’s Wide Field Instrument manager at Goddard. “All the years of hard work and the team’s dedication have brought us to this exciting moment.”
      NASA’s Nancy Grace Roman Space Telescope is a next-generation observatory that will survey the infrared universe from beyond the orbit of the Moon. The spacecraft’s giant camera, the Wide Field Instrument, will be fundamental to this exploration. Data it gathers will enable scientists to discover new and uniquely detailed information about planetary systems around other stars. The instrument will also map how matter is structured and distributed throughout the cosmos, which could ultimately allow scientists to discover the fate of the universe. Watch this video to see a simplified version of how the Wide Field Instrument works.
      NASA’s Goddard Space Flight Center Seeing the Bigger Picture
      After Roman launches by May 2027, each of the Wide Field Instrument’s 300-million-pixel images will capture a patch of the sky bigger than the apparent size of a full moon. The instrument’s large field of view will enable sweeping celestial surveys, revealing billions of cosmic objects across vast stretches of time and space. Astronomers will conduct research that could take hundreds of years using other telescopes.
      And by observing from space, Roman’s camera will be very sensitive to infrared light –– light with longer wavelengths than our eyes can see –– from far across the cosmos. This ancient cosmic light will help scientists address some of the biggest cosmic mysteries, one of which is how the universe evolved to its present state.
      From the telescope, light’s path through the instrument begins by passing through one of several optical elements in a large wheel. These elements include filters, which allow specific wavelengths of light to pass through, and a grism and prism, which split light into all of its individual colors. These detailed patterns, called spectra, reveal information about the object that emitted the light.
      Then, the light travels on toward the camera’s set of 18 detectors, which each contain 16 million pixels. The large number of detectors and pixels gives Roman its large field of view. The instrument is designed for accurate, stable images and exquisite precision in measuring the exact amount of light in every pixel of every image, giving Roman unprecedented power to study dark energy. The detectors will be held at about minus 300 degrees Fahrenheit (minus 184 degrees Celsius) to increase sensitivity to the infrared universe.
      “When the light reaches the detectors, that marks the end of what may have been a 10-billion-year journey through space,” said Art Whipple, an aerospace engineer at Goddard who has contributed to the Wide Field Instrument’s design and construction for more than a decade.
      Once Roman begins observing, its rapid data delivery will require new analysis techniques.
      “If we had every astronomer on Earth working on Roman data, there still wouldn’t be nearly enough people to go through it all,” McEnery said. “We’re looking at modern techniques like machine learning and artificial intelligence to help sift through Roman’s observations and find where the most exciting things are.”
      Now that the Wide Field Instrument is at Goddard, it will be tested to ensure everything is operating as expected. It will be integrated onto the instrument carrier and mated to the telescope this fall, bringing scientists one step closer to making groundbreaking discoveries for decades to come.
      One panel on the Wide Field Instrument for NASA’s Nancy Grace Roman Space Telescope contains hundreds of names of team members who helped design and build the instrument.BAE Systems To virtually tour an interactive version of the telescope, visit:
      https://roman.gsfc.nasa.gov/interactive
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Explore More
      3 min read NASA’s Roman Space Telescope’s ‘Eyes’ Pass First Vision Test
      Article 4 months ago 6 min read How NASA’s Roman Space Telescope Will Chronicle the Active Cosmos
      Article 9 months ago 5 min read NASA Tests Deployment of Roman Space Telescope’s ‘Visor’
      Article 4 days ago Share
      Details
      Last Updated Aug 13, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Dark Energy Dark Matter Exoplanets Goddard Space Flight Center Science-enabling Technology The Universe View the full article
    • By NASA
      NASA/Kim Shiflett Teams transport NASA’s SLS (Space Launch System) core stage into the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida on July 24, 2024. Tugboats and towing vessels moved the Pegasus barge and 212-foot-long core stage 900-miles to the Florida spaceport from NASA’s Michoud Assembly Facility in New Orleans, where it was manufactured and assembled.
      In the coming months, teams will integrate the rocket core stage atop the mobile launcher with the additional Artemis II flight hardware, including the twin solid rocket boosters, launch vehicle stage adapter, and the Orion spacecraft.
      The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
      Follow the next steps in this journey on NASA’s Artemis blog.
      Text credit: Jason Costa
      Image credit: NASA/Kim Shiflett
      View the full article
    • By NASA
      On March 24, 1979, space shuttle Columbia arrived at NASA’s Kennedy Space Center (KSC) for the very first time. Following Presidential direction to build the space shuttle in 1972, Congress quickly approved and funded the program later that year. Construction of the first orbital vehicle, later named Columbia, began in 1975. Four years later, Columbia completed its first transcontinental flight, arriving at KSC to begin preparations for its first mission. The first shuttle flight in April 1981 ushered in an era of reusable space transportation.

      Left: NASA Administrator James C. Fletcher, left, presents a model of the space shuttle to President Richard M. Nixon in January 1972. Right: Apollo 16 astronauts John W. Young, left, and Charles M. Duke on the Moon in April 1972.
      On Jan. 5, 1972, President Richard M. Nixon directed NASA to build the space shuttle, formally called the Space Transportation System (STS), stating that “it would revolutionize transportation into near space.” NASA Administrator James C. Fletcher hailed the President’s decision as “an historic step in the nation’s space program,” adding that it would change what humans can accomplish in space. Apollo 16 astronauts John W. Young and Charles M. Duke learned of the space shuttle’s approval while exploring the Moon in April 1972. Mission Control informed them that Congress had authorized the development of the space shuttle. Young and Duke both enthusiastically responded to the positive news with “Beautiful! Wonderful! Beautiful!” Young added with some foresight, “The country needs that shuttle mighty bad. You’ll see.” He had no way of knowing that nine years later, he would command the first ship of the space shuttle fleet, Columbia, on its maiden voyage.

      Left: Columbia’s crew compartment during assembly in 1976. Middle: Columbia’s aft fuselage and wings during assembly in November 1977. Right: Columbia just prior to rollout from Rockwell’s plant in Palmdale in March 1979.
      Once Congress authorized the funds, on July 26, 1972, NASA awarded the contract to the North American Rockwell Corporation of Downey, California, to begin construction of the first orbital vehicle. Officially known as Orbital Vehicle-102 (OV-102), in January 1979 NASA named it Columbia after Captain Robert Gary’s sloop that explored the Pacific Northwest in the 1790s and took the honor as the first American ship to circumnavigate the globe, as well as after the Apollo 11 Command Module. Construction of Columbia’s first components at Rockwell’s Palmdale, California, plant began on March 25, 1975.

      Left: Workers roll Columbia out from its hangar at Rockwell’s Palmdale, California, plant. Middle: Workers transport Columbia from Rockwell’s Palmdale facility to NASA’s Dryden, now Armstrong, Flight Research Center. Right: Columbia atop the Shuttle Carrier Aircraft takes off from Dryden to begin the cross-country ferry flight. 
      Nearly four years later, on March 8, 1979, Columbia rolled out of the Palmdale facility to begin its multi-day transcontinental journey to KSC. For the first step of the journey, workers towed Columbia from Palmdale overland to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base (AFB) 36 miles away. Two days later, workers there hoisted Columbia onto the Shuttle Carrier Aircraft (SCA), a Boeing 747 aircraft modified to transport space shuttle orbiters. During a test flight, thousands of the orbiter’s thermal protection system tiles fell off. Workers returned Columbia to a hangar where over 100 men and women worked for nine days reapplying the tiles. Weather then delayed Columbia’s departure until March 20, when the SCA/shuttle duo flew from Dryden to Biggs AFB in El Paso, Texas.

      Left: Space shuttle Columbia atop its Shuttle Carrier Aircraft (SCA) touches down at Kelly Air Force Base (AFB) in San Antonio for an overnight stop. Middle: Head on view of Columbia atop the SCA. Right: Tina Aguilar, age nine, an aspiring young reporter, interviews astronaut Donald K. “Deke” Slayton in front of Columbia and the SCA at Kelly AFB.
      Weather delayed Columbia’s departure for the planned refueling stop at Kelly AFB in San Antonio, until the next day. About 200,000 people went to view the shuttle during its overnight layover in San Antonio prior to its departure on March 23.

      Left: The past meets the future, as space shuttle Columbia atop its Shuttle Carrier Aircraft (SCA) flies over the Saturn V display at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Columbia atop the SCA touches down at KSC’s Shuttle Landing Facility (SLF), with the Vehicle Assembly Building visible in the background. Right: At the SLF, NASA Administrator Robert A. Frosch addresses the crowd assembled to welcome Columbia to KSC, as other dignitaries listen.
      After another overnight stop at Eglin AFB in Florida, Columbia atop the SCA touched down at KSC’s Shuttle Landing Facility (SLF) on March 24, a crowd of about 3,000 cheering its arrival. Dignitaries in attendance at a brief welcoming ceremony at the SLF included NASA Administrator Robert A. Frosch, KSC Director Lee R. Scherer, SCA pilots Joseph S. Algranti and Fitzhugh L. Fulton, program manager for Shuttle Flight Test Operations NASA astronaut Donald K. “Deke” Slayton, and astronauts John W. Young and Robert L. Crippen, designated as the commander and pilot for STS-1, the first space shuttle mission. Also in attendance, U.S. Congressman C. William “Bill” Nelson whose district included KSC and now serves as NASA’s 14th administrator, and Florida Lieutenant Governor J. Wayne Mixson.

      Left: Columbia in the Orbiter Processing Facility at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Workers hoist Columbia in KSC’s Vehicle Assembly Building (VAB) for mating with its external tank and solid rocket boosters. Right: Columbia rolls out of the VAB on its way to Launch Pad 39A.
      The next day, after removing Columbia from the back of the SCA, workers towed it into the Orbiter Processing Facility, where the orbiter spent the next 19 months preparing for its first flight. Rollover to the Vehicle Assembly Building (VAB) for mating with its External Tank and the two Solid Rocket Boosters took place Nov. 24, 1980. After a series of integrated tests, the shuttle stack rolled out of the VAB and made the 3.5-mile trip to Launch Pad 39A on Dec. 29, 1980. Young and Crippen flew Columbia’s historic first mission, STS-1, in April 1981, ushering in an era of reusable space transportation.
      Share
      Details
      Last Updated Mar 21, 2024 Related Terms
      NASA History Space Shuttle Explore More
      21 min read 55 Years Ago: Four Months Until the Moon Landing
      Article 1 day ago 11 min read 20 Years Ago: First Image of Earth from Mars and Other Postcards of Home
      Article 2 weeks ago 4 min read More Planets than Stars: Kepler’s Legacy
      Article 2 weeks ago View the full article
    • By European Space Agency
      Video: 00:02:10 The largest components for the first flight model of Europe’s new rocket Ariane 6 arrived at the port of Pariacabo in Kourou, French Guiana on 21 February 2024 via the novel ship, Canopée (canopy in French).
      The Ariane 6 stages and components are all manufactured across Europe. On this trip, Canopée brought the central core for Ariane 6’s first flight. The main engine and the main stage were integrated in Les Mureaux, France, while the upper stage and insulation for the rocket’s exterior were built up in Bremen, Germany.
      The various Ariane 6 components are then offloaded and transported by road to the new Ariane 6 launch vehicle assembly building just a few kilometres away. Here, the launcher stages are unpacked and installed on the assembly line for integration, and finally, liftoff.
      The Ariane 6 boosters are already in Europe’s Spaceport after their production in Italy, they are the same P120C solid propulsion boosters as used for Europe’s Vega-C rocket.
      First the central core will be assembled horizontally after which it is transported to the launchpad. Here it will be lifted into the upright position after which Boosters and the upper stage will be added inside the mobile gantry.
      This summer Flight Model-1 will be ready to let its engine rumble and fly.
       
      For the full b-roll sets for launch campaign -> https://www.esa.int/esatv/Videos/2024/02/Ariane_6_inaugural_launch
      and tests and development ->  https://www.esa.int/esatv/Videos/2022/08/Ariane_6_development_-_clips
      View the full article
    • By European Space Agency
      Image: Ariane 6 arrives at Europe’s Spaceport via Canopée View the full article
  • Check out these Videos

×
×
  • Create New...