Members Can Post Anonymously On This Site
Global IT Outage Causes Chaos Worldwide! Crowdstrike Outage Explained. LATEST NEWS
-
Similar Topics
-
By NASA
4 min read
Expanded AI Model with Global Data Enhances Earth Science Applications
On June 22, 2013, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the East Peak fire burning in southern Colorado near Trinidad. Burned areas appear dark red, while actively burning areas look orange. Dark green areas are forests; light green areas are grasslands. Data from Landsat 8 were used to train the Prithvi artificial intelligence model, which can help detect burn scars. NASA Earth Observatory NASA, IBM, and Forschungszentrum Jülich have released an expanded version of the open-source Prithvi Geospatial artificial intelligence (AI) foundation model to support a broader range of geographical applications. Now, with the inclusion of global data, the foundation model can support tracking changes in land use, monitoring disasters, and predicting crop yields worldwide.
The Prithvi Geospatial foundation model, first released in August 2023 by NASA and IBM, is pre-trained on NASA’s Harmonized Landsat and Sentinel-2 (HLS) dataset and learns by filling in masked information. The model is available on Hugging Face, a data science platform where machine learning developers openly build, train, deploy, and share models. Because NASA releases data, products, and research in the open, businesses and commercial entities can take these models and transform them into marketable products and services that generate economic value.
“We’re excited about the downstream applications that are made possible with the addition of global HLS data to the Prithvi Geospatial foundation model. We’ve embedded NASA’s scientific expertise directly into these foundation models, enabling them to quickly translate petabytes of data into actionable insights,” said Kevin Murphy, NASA chief science data officer. “It’s like having a powerful assistant that leverages NASA’s knowledge to help make faster, more informed decisions, leading to economic and societal benefits.”
AI foundation models are pre-trained on large datasets with self-supervised learning techniques, providing flexible base models that can be fine-tuned for domain-specific downstream tasks.
Crop classification prediction generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. Focusing on diverse land use and ecosystems, researchers selected HLS satellite images that represented various landscapes while avoiding lower-quality data caused by clouds or gaps. Urban areas were emphasized to ensure better coverage, and strict quality controls were applied to create a large, well-balanced dataset. The final dataset is significantly larger than previous versions, offering improved global representation and reliability for environmental analysis. These methods created a robust and representative dataset, ideal for reliable model training and analysis.
The Prithvi Geospatial foundation model has already proven valuable in several applications, including post-disaster flood mapping and detecting burn scars caused by fires.
One application, the Multi-Temporal Cloud Gap Imputation, leverages the foundation model to reconstruct the gaps in satellite imagery caused by cloud cover, enabling a clearer view of Earth’s surface over time. This approach supports a variety of applications, including environmental monitoring and agricultural planning.
Another application, Multi-Temporal Crop Segmentation, uses satellite imagery to classify and map different crop types and land cover across the United States. By analyzing time-sequenced data and layering U.S. Department of Agriculture’s Crop Data, Prithvi Geospatial can accurately identify crop patterns, which in turn could improve agricultural monitoring and resource management on a large scale.
The flood mapping dataset can classify flood water and permanent water across diverse biomes and ecosystems, supporting flood management by training models to detect surface water.
Wildfire scar mapping combines satellite imagery with wildfire data to capture detailed views of wildfire scars shortly after fires occurred. This approach provides valuable data for training models to map fire-affected areas, aiding in wildfire management and recovery efforts.
Burn scar mapping generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. This model has also been tested with additional downstream applications including estimation of gross primary productivity, above ground biomass estimation, landslide detection, and burn intensity estimations.
“The updates to this Prithvi Geospatial model have been driven by valuable feedback from users of the initial version,” said Rahul Ramachandran, AI foundation model for science lead and senior data science strategist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “This enhanced model has also undergone rigorous testing across a broader range of downstream use cases, ensuring improved versatility and performance, resulting in a version of the model that will empower diverse environmental monitoring applications, delivering significant societal benefits.”
The Prithvi Geospatial Foundation Model was developed as part of an initiative of NASA’s Office of the Chief Science Data Officer to unlock the value of NASA’s vast collection of science data using AI. NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT), based at Marshall, IBM Research, and the Jülich Supercomputing Centre, Forschungszentrum, Jülich, designed the foundation model on the supercomputer Jülich Wizard for European Leadership Science (JUWELS), operated by Jülich Supercomputing Centre. This collaboration was facilitated by IEEE Geoscience and Remote Sensing Society.
For more information about NASA’s strategy of developing foundation models for science, visit https://science.nasa.gov/artificial-intelligence-science.
Share
Details
Last Updated Dec 04, 2024 Related Terms
Earth Science & Research Explore More
9 min read Towards Autonomous Surface Missions on Ocean Worlds
Article
23 hours ago
5 min read NASA-Led Team Links Comet Water to Earth’s Oceans
Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets…
Article
23 hours ago
1 min read Coming Spring 2025: Planetary Defenders Documentary
ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders…
Article
23 hours ago
Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Video: 00:09:01 Proba-3 is such an ambitious mission that it needs more than one single spacecraft to succeed. In order for Proba-3’s Coronagraph spacecraft to observe the Sun’s faint surrounding atmosphere, its disk-bearing Occulter spacecraft must block out the fiery solar disk. This means Proba-3’s Occulter ends up facing the Sun continuously, making it a valuable platform for science in its own right.
Proba-3 is scheduled for launch on a PSLV-XL rocket from Satish Dhawan Space Centre in Sriharikota, India, on Wednesday, 4 December, at 11:38 CET (10:38 GMT, 16:08 local time).
View the full article
-
By European Space Agency
Video: 00:02:39
The Ignis mission, named after the Latin word for ‘fire,’ symbolises the spark igniting a new era in Poland’s space endeavours.
The central motif of the patch features an eagle – a reference to the emblem of Poland – in white and red, reflecting the colours and design of the Polish national flag. Its tail gracefully evokes a flame, while its outstretched wings trace the contours of the Orla Perć mountain range in the Polish Tatra Mountains. Within the mission’s name, the second ‘i’ takes the form of the International Space Station. Above it, stars converge to form the Scutum constellation, paying homage to astronomer Johannes Hevelius (1611-87), who was born in the Polish city of Gdańsk. Finally, a silver line represents the horizon, signifying the dawn of a new era in space exploration.
For more details, read the press release here.
Follow Sławosz’s journey on the Ignis website.
View the full article
-
By European Space Agency
Researchers have achieved a breakthrough in bringing 5G technology to space, marking a pivotal moment in telecommunications history. The 5G Infrastructure Study (5G-IS), funded by ESA’s Connectivity and Secure Communications directorate, has mapped out how satellites can deliver reliable 5G connectivity worldwide.
View the full article
-
By NASA
Space-grown crystals could lead to targeted cancer drugs
Researchers used space-grown protein crystals to determine the structure of a helix-loop-helix (HLH) peptide (one with a double helix and connecting loop) in a complex with vascular endothelial growth factor-A (VEGF). VEGF prompts the formation of new blood vessels and inhibiting it can stop tumor growth. This finding suggests that HLH peptides could be used to create drugs to target disease-related proteins like VEGF.
JAXA PCG, an investigation from JAXA (Japan Aerospace Exploration Agency), grew protein crystals in microgravity and returned them to Earth for detailed analysis of their structures. Microgravity enables production of high-quality crystals, and examining their structures supports the design of new drugs and other types of research.
Japan Aerospace Exploration Agency astronaut Soichi Noguchi works on the PCG experiment aboard the International Space Station.NASA Wood could make satellites more sustainable
Wood exposed to space for approximately 10 months showed no change in weight and no erosion due to atomic oxygen. This finding could inform selection of the appropriate species and thickness of wood for use in building satellites.
Metal satellites reentering Earth’s atmosphere can generate particles and aerosols that may harm the ozone layer. Wood becomes water and carbon dioxide on reentry, does not contribute to atmospheric pollution, and could provide a more sustainable option for future space exploration. JAXA’s Exposure of Wood to Outer Space evaluated how atomic oxygen, galactic cosmic rays, and solar energetic particles in space affect the mechanical properties of wood.
Different types of wood to be tested in space as a building material for satellites. Kyoto University Analyzing glass-forming ability of magnesium silicates
Researchers report detailed structural and atomic information for glassy and liquid magnesium silicates, which are important in glass science and geoscience. The results suggest that electronic structure does not play an important role in determining glass-forming ability, but atomic structure does.
JAXA’s Fragility measured thermophysical properties such as density and viscosity of oxidized molten metals using the International Space Station’s Electrostatic Levitation Furnace (ELF) to gain insight into glass formation and the design of novel materials. The ELF makes it possible to observe the behavior of materials without the use of a container, providing information crucial for examining glass formation.
NASA astronaut Scott Kelly works on the Electrostatic Levitation Furnace aboard the International Space Station.NASAView the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.