Jump to content

Global IT Outage Causes Chaos Worldwide! Crowdstrike Outage Explained. LATEST NEWS


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Researchers used an interferometer that can precisely measure gravity, magnetic fields, and other forces to study the influence of International Space Station vibrations. Results revealed that matter-wave interference of rubidium gases is robust and repeatable over a period spanning months. Atom interferometry experiments could help create high-precision measurement capabilities for gravitational, Earth, and planetary sciences.

      Using ultracold rubidium atoms, Cold Atom Lab researchers examined a three-pulse Mach–Zehnder interferometer, a device that determines phase shift variations between two parallel beams, to understand the influence of space station vibrations. Researchers note that atom sensitivities and visibility degrade due to the vibration environment of the International Space Station. The Cold Atom Lab’s interferometer uses light pulses to create a readout of accelerations, rotations, gravity, and subtle forces that could signify new physics acting on matter. Cold Atom Lab experiments serve as pathfinders for proposed space missions relying on the sustained measurement of wave-matter interference, including gravitational wave detection, dark matter detection, seismology mapping, and advanced satellite navigation. 

      Read more here.

      Researchers developed a novel method to categorize and assess the fitness of each gene in one species of bacteria, N. aromaticavorans. Results published in BMC Genomics state that core metabolic processes and growth-promoting genes have high fitness during spaceflight, likely as an adaptive response to stress in microgravity. Future comprehensive studies of the entire genome of other species could help guide the development of strategies to enhance or diminish microorganism resilience in space missions.

      The Bacterial Genome Fitness investigation grows multiple types of bacteria in space to learn more about important processes for their growth. Previous studies of microorganism communities have shown that spaceflight can induce resistance to antibiotics, lead to changes in biofilm formation, and boost cell growth in various species. N. aromaticivorans can degrade certain compounds, potentially providing benefits in composting and biofuel production during deep space missions.

      Read more here.

      Researchers burned large, isolated droplets of the hydrocarbon n-dodecane, a component of kerosene and some jet fuels, in microgravity and found that hot flames were followed by a prolonged period of cool flames at lower pressures. Results showed that hot flames were more likely to unpredictably reignite at higher pressures. Studying the burn behavior of hydrocarbons assists researchers in the development of more efficient engines and fuels that reduce fire hazards to ensure crew safety in future long-distance missions.

      The Cool Flames investigation studies the low-temperature combustion of various isolated fuel droplets. Cool flames happen in microgravity when certain fuel types burn very hot and then quickly drop to a much lower temperature with no visible flames. This investigation studies several fuels such as pure hydrocarbons, biofuels, and mixtures of pure hydrocarbons to enhance understanding of low-temperature chemistry. Improved knowledge of low-temperature burning could benefit next-generation fuels and engines.

      Read more here.
      NASA astronaut Shane Kimbrough completing the Multi-user Droplet Combustion Apparatus reconfiguration to the Cool Flames Investigation setup.NASAView the full article
    • By NASA
      The American flag pictured inside the window of Boeing’s Starliner spacecraft at the International Space Station.Credit: NASA NASA will provide live coverage of the upcoming activities for Boeing’s Starliner spacecraft departure from the International Space Station and return to Earth. The uncrewed spacecraft will depart from the orbiting laboratory for a landing at White Sands Space Harbor in New Mexico.
      Starliner is scheduled to autonomously undock from the space station at approximately 6:04 p.m. EDT Friday, Sept. 6, to begin the journey home, weather conditions permitting. NASA and Boeing are targeting approximately 12:03 a.m., Saturday, Sept. 7, for the landing and conclusion of the flight test.
      NASA’s live coverage of return and related activities will stream on NASA+, the NASA app, and the agency’s website. Learn how to stream NASA programming through a variety of platforms including social media.
      Ahead of Starliner’s return, NASA will host a pre-departure news conference at 12 p.m., Wednesday, Sept. 4, from the agency’s Johnson Space Center in Houston. NASA’s Commercial Crew and International Space Station Program managers and a flight director will participate.
      To attend the pre-departure news conference in person, U.S. media must contact the NASA Johnson newsroom by 5 p.m., Tuesday, Sept. 3, at jsccommu@mail.nasa.gov or 281-483-5111. To join the pre-departure news conference by phone, media must contact the NASA newsroom no later than two hours prior to the start of the call.
      NASA astronauts Butch Wilmore and Suni Williams launched aboard Boeing’s Starliner spacecraft on June 5 for its first crewed flight, arriving at the space station on June 6. As Starliner approached the orbiting laboratory, NASA and Boeing identified helium leaks and experienced issues with the spacecraft reaction control thrusters. For the safety of the astronauts, NASA announced on Aug. 24 that Starliner will return to Earth from the station without a crew. Wilmore and Williams will remain aboard the station and return home in February 2025 aboard the SpaceX Dragon spacecraft with two other crew members assigned to NASA’s SpaceX Crew-9 mission.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 4
      12 p.m. – Starliner pre-departure news conference from NASA’s Johnson Space Center on NASA+, the NASA app, YouTube, and the agency’s website.
      Friday, Sept. 6
      5:45 p.m. – Undocking coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      6:04 p.m. – Undocking
      10:50 p.m. – Coverage resumes for deorbit burn, entry, and landing on NASA+, the NASA app, YouTube, and the agency’s website.
      Saturday, Sept. 7
      12:03 a.m. – Targeted landing
      1:30 a.m. – Post-landing news conference with the following participants:
      Joel Montalbano, deputy associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington Steve Stich, manager, Commercial Crew Program, NASA Kennedy Space Center in Florida Dana Weigel, manager, International Space Station, NASA Johnson John Shannon, vice president, Boeing Exploration Systems Mark Nappi, vice president and program manager, Boeing Commercial Crew Program Coverage of the post-landing news conference will stream live on NASA+, the NASA app, YouTube, and the agency’s website.
      To attend the post-landing news conference in person, U.S. media must contact the NASA Johnson newsroom by 12 p.m., Sept. 6. To join the post-landing news conference by phone, media must contact the NASA Johnson newsroom no later than one hour prior to the start of the event.
      See full mission coverage, NASA’s commercial crew blog, and more information about the mission at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Steve Siceloff
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.sieceloff@nasa.gov
      Share
      Details
      Last Updated Aug 30, 2024 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Crew Commercial Space International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By NASA
      6 Min Read NASA Discovers a Long-Sought Global Electric Field on Earth
      The geographic North Pole seen from the Endurance rocket ship at 477 miles (768 kilometers) altitude above the Arctic. The faint red and green streaks at the top of the image are artifacts of lens flare. Credits: NASA Key Points
      A rocket team reports the first successful detection of Earth’s ambipolar electric field: a weak, planet-wide electric field as fundamental as Earth’s gravity and magnetic fields. First hypothesized more than 60 years ago, the ambipolar electric field is a key driver of the “polar wind,” a steady outflow of charged particles into space that occurs above Earth’s poles. This electric field lifts charged particles in our upper atmosphere to greater heights than they would otherwise reach and may have shaped our planet’s evolution in ways yet to be explored.
      Using observations from a NASA suborbital rocket, an international team of scientists has, for the first time, successfully measured a planet-wide electric field thought to be as fundamental to Earth as its gravity and magnetic fields. Known as the ambipolar electric field, scientists first hypothesized over 60 years ago that it drove how our planet’s atmosphere can escape above Earth’s North and South Poles. Measurements from the rocket, NASA’s Endurance mission, have confirmed the existence of the ambipolar field and quantified its strength, revealing its role in driving atmospheric escape and shaping our ionosphere — a layer of the upper atmosphere — more broadly.
      Understanding the complex movements and evolution of our planet’s atmosphere provides clues not only to the history of Earth but also gives us insight into the mysteries of other planets and determining which ones might be hospitable to life. The paper was published Wednesday, Aug. 28, 2024, in the journal Nature.
      Credit: NASA’s Goddard Space Flight Center/Lacey Young
      Download this video and related animations from NASA’s Scientific Visualization Studio. An Electric Field Drawing Particles Out to Space
      Since the late 1960s, spacecraft flying over Earth’s poles have detected a stream of particles flowing from our atmosphere into space. Theorists predicted this outflow, which they dubbed the “polar wind,” spurring research to understand its causes. 
      Some amount of outflow from our atmosphere was expected. Intense, unfiltered sunlight should cause some particles from our air to escape into space, like steam evaporating from a pot of water. But the observed polar wind was more mysterious. Many particles within it were cold, with no signs they had been heated — yet they were traveling at supersonic speeds.
      “Something had to be drawing these particles out of the atmosphere,” said Glyn Collinson, principal investigator of Endurance at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the paper. Scientists suspected a yet-to-be-discovered electric field could be at work.
      The hypothesized electric field, generated at the subatomic scale, was expected to be incredibly weak, with its effects felt only over hundreds of miles. For decades, detecting it was beyond the limits of existing technology. In 2016, Collinson and his team got to work inventing a new instrument they thought was up to the task of measuring Earth’s ambipolar field.
      Launching a Rocket from the Arctic
      The team’s instruments and ideas were best suited for a suborbital rocket flight launched from the Arctic. In a nod to the ship that carried Ernest Shackleton on his famous 1914 voyage to Antarctica, the team named their mission Endurance. The scientists set a course for Svalbard, a Norwegian archipelago just a few hundred miles from the North Pole and home to the northernmost rocket range in the world.
      “Svalbard is the only rocket range in the world where you can fly through the polar wind and make the measurements we needed,” said Suzie Imber, a space physicist at the University of Leicester, UK, and co-author of the paper.
      On May 11, 2022, Endurance launched and reached an altitude of 477.23 miles (768.03 kilometers), splashing down 19 minutes later in the Greenland Sea. Across the 322-mile altitude range where it collected data, Endurance measured a change in electric potential of only 0.55 volts.
      “A half a volt is almost nothing — it’s only about as strong as a watch battery,” Collinson said. “But that’s just the right amount to explain the polar wind.”
      The Endurance rocket ship launches from Ny-Ålesund, Svalbard. Credit: Andøya Space/Leif Jonny Eilertsen Hydrogen ions, the most abundant type of particle in the polar wind, experience an outward force from this field 10.6 times stronger than gravity. “That’s more than enough to counter gravity — in fact, it’s enough to launch them upwards into space at supersonic speeds,” said Alex Glocer, Endurance project scientist at NASA Goddard and co-author of the paper.
      Heavier particles also get a boost. Oxygen ions at that same altitude, immersed in this half-a-volt field, weigh half as much. In general, the team found that the ambipolar field increases what’s known as the “scale height” of the ionosphere by 271%, meaning the ionosphere remains denser to greater heights than it would be without it.
      “It’s like this conveyor belt, lifting the atmosphere up into space,” Collinson added.
      Endurance’s discovery has opened many new paths for exploration. The ambipolar field, as a fundamental energy field of our planet alongside gravity and magnetism, may have continuously shaped the evolution of our atmosphere in ways we can now begin to explore. Because it’s created by the internal dynamics of an atmosphere, similar electric fields are expected to exist on other planets, including Venus and Mars.
      “Any planet with an atmosphere should have an ambipolar field,” Collinson said. “Now that we’ve finally measured it, we can begin learning how it’s shaped our planet as well as others over time.”

      By Miles Hatfield and Rachel Lense
      NASA’s Goddard Space Flight Center, Greenbelt, Md.

      Endurance was a NASA-funded mission conducted through the Sounding Rocket Program at NASA’s Wallops Flight Facility in Virginia. The Svalbard Rocket Range is owned and operated by Andøya Space. The European Incoherent Scatter Scientific Association (EISCAT) Svalbard radar, located in Longyearbyen, made ground-based measurements of the ionosphere critical to interpreting the rocket data. The United Kingdom Natural Environment Research Council (NERC) and the Research Council of Norway (RCN) funded the EISCAT radar for the Endurance mission. EISCAT is owned and operated by research institutes and research councils of Norway, Sweden, Finland, Japan, China, and the United Kingdom (the EISCAT Associates). The Endurance mission team encompasses affiliates of the Catholic University of America, Embry-Riddle Aeronautical University, the University of California, Berkeley, the University of Colorado at Boulder, the University of Leicester, U.K., the University of New Hampshire, and Penn State University.
      Share
      Details
      Last Updated Aug 28, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Ionosphere Science & Research Sounding Rockets Sounding Rockets Program View the full article
    • By NASA
      Researchers successfully produced cellulose from bacteria cultured on the International Space Station for four weeks. The bacteria used in the experiment, K. hansenii, is known to produce the highest amount of cellulose and could be considered for large-scale production in microgravity to support the development of materials used in construction, clothing, and the supply of energy.

      Ice Cubes Experiment Cube #4, #5- Kirara, a temperature-controlled module typically used for protein crystallization, was used here to incubate the target bacteria. Researchers developed a customized methodology that consisted of adjusting gas and air in various culture vessels in low-temperature conditions. Future studies could help to promote large scale production of bacterial cellulose to support deep space exploration.

      Researchers studied two properties of oil-in-water emulsions in microgravity (i.e., drop size and drop displacement at a constant speed and direction), finding that while oil drops grow over time, drop displacement decreases. This was an unexpected observation in microgravity where neither sedimentation nor creaming occurs. These results could improve knowledge of fluid mechanics relevant to industrial processes on Earth and enable technologies for space exploration.

      Fluid Science Laboratory (FSL) Soft Matter Dynamics – Particle STAbilised Emulsions and Foams (PASTA) studies the dynamics of droplets to enhance understanding of coalescence and size evolution in emulsions. Emulsions are systems where two unmixable fluids are combined via small droplets inside the second liquid. Researchers explained that drop growth was the result of aggregation (or coalescence) between small drops colliding with each other. Enhanced understanding of coalescence, a property that is associated with the stability of surfactants such as oils, dyes, and detergents, can lead to a safer environment and sustainability of certain emulsion technologies in multiple arenas such as the food, pharmaceutical, paint, and lubrication industries.

      Documentation of a sample that was removed from the Fluid Science Laboratory (FSL) during operations to exchange samples inside the FSL Soft Matter Dynamics (SMD) experiment container. NASA/Samantha Cristoferetti Nystagmus, a condition associated with vestibular imbalance and cerebellar dysfunction characterized by rapid and uncontrollable eye movements, was detected in about 45% of crew members soon after landing. Correct diagnosis of this condition enables the development of strategies and countermeasures for a speedy recovery after spaceflight.

      In the Field Test investigation, researchers investigated the complexity, severity, and duration of physical changes that occurred in astronauts after spaceflight. Astronauts and cosmonauts that live in space for extended periods experience physical changes that have noticeable effects once they return to Earth’s gravity, including changes to vision, balance, coordination, blood pressure, and the ability to walk. Some crew members showed nystagmus in several gaze positions, with significant recovery identified 10 to 13 days postflight. These results expand researchers’ understanding of vestibular disorders, adaptations to spaceflight, and dynamics of recovery after prolonged microgravity exposure.

      NASA Human Health and Performance Directorate personnel assess hardware used in the Field Test investigation.NASA/Lauren HarnettView the full article
    • By NASA
      NASA’s Boeing Crew Flight Test Status News Conference
  • Check out these Videos

×
×
  • Create New...