Jump to content

New Evidence Adds to Findings Hinting at Network of Caves on Moon


NASA

Recommended Posts

  • Publishers
Two rows of five squares, each showing a round depression in the center of a gray background. The depressions vary in sizes, and the backgrounds vary in shades of gray.
These images from NASA’s LRO spacecraft show a collection of pits detected on the Moon. Each image covers an area about 728 feet wide.

An international team of scientists using data from NASA’s LRO (Lunar Reconnaissance Orbiter) has discovered evidence of caves beneath the Moon’s surface.

In re-analyzing radar data collected by LRO’s Mini-RF (Miniature Radio-Frequency) instrument in 2010, the team found evidence of a cave extending more than 200 feet from the base of a pit. The pit is located 230 miles northeast of the first human landing site on the Moon in Mare Tranquillitatis. The full extent of the cave is unknown, but it could stretch for miles beneath the mare.

Scientists have suspected for decades that there are subsurface caves on the Moon, just like there are on Earth. Pits that may lead to caves were suggested in images from NASA’s lunar orbiters that mapped the Moon’s surface before NASA’s Apollo human landings. A pit was then confirmed in 2009 from images taken by JAXA’s (Japan Aerospace Exploration Agency) Kaguya orbiter, and many have since been found across the Moon through images and thermal measurements of the surface taken by LRO. 

NASA’s LRO Finds Lunar Pits Harbor Comfortable Temperatures

“Now the analysis of the Mini-RF radar data tells us how far these caves might extend,” said Noah Petro, LRO project scientist based at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Lunar Pits Could Shelter Astronauts, Reveal Details of How ‘Man in the Moon’ Formed

Like “lava tubes” found here on Earth, scientists suspect that lunar caves formed when molten lava flowed beneath a field of cooled lava, or a crust formed over a river of lava, leaving a long, hollow tunnel. If the ceiling of a solidified lava tube collapses, it opens a pit, like a skylight, that can lead into the rest of the cave-like tube.

Evidence is mounting that an intricate, winding network of channels exist just below the surface of the Moon. These “lava tubes” are produced by underground flowing magma from ancient volcanoes. Credit: NASA

Mini-RF is operated by The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.

By Lonnie Shekhtman

NASA’s Goddard Space Flight Center, Greenbelt, Md.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read Reinventing the Clock: NASA’s New Tech for Space Timekeeping
      The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft. Credits: NASA/Matthew Kaufman Here on Earth, it might not matter if your wristwatch runs a few seconds slow. But crucial spacecraft functions need accuracy down to one billionth of a second or less. Navigating with GPS, for example, relies on precise timing signals from satellites to pinpoint locations. Three teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are at work to push timekeeping for space exploration to new levels of precision.
      One team develops highly precise quantum clock synchronization techniques to aid essential spacecraft communication and navigation. Another Goddard team is working to employ the technique of clock synchronization in space-based platforms to enable telescopes to function as one enormous observatory. The third team is developing an atomic clock for spacecraft based on strontium, a metallic chemical element, to enable scientific observations not possible with current technology. The need for increasingly accurate timekeeping is why these teams at NASA Goddard, supported by the center’s Internal Research and Development program, hone clock precision and synchronization with innovative technologies like quantum and optical communications.
      Syncing Up Across the Solar System
      “Society requires clock synchronization for many crucial functions like power grid management, stock market openings, financial transactions, and much more,” said Alejandro Rodriguez Perez, a NASA Goddard researcher. “NASA uses clock synchronization to determine the position of spacecraft and set navigation parameters.”
      If you line up two clocks and sync them together, you might expect that they will tick at the same rate forever. In reality, the more time passes, the more out of sync the clocks become, especially if those clocks are on spacecraft traveling at tens of thousands of miles per hour. Rodriguez Perez seeks to develop a new way of precisely synchronizing such clocks and keeping them synced using quantum technology.
      Work on the quantum clock synchronization protocol takes place in this lab at NASA’s Goddard Space Flight Center in Greenbelt, Md.NASA/Matthew Kaufman In quantum physics, two particles are entangled when they behave like a single object and occupy two states at once. For clocks, applying quantum protocols to entangled photons could allow for a precise and secure way to sync clocks across long distances.
      The heart of the synchronization protocol is called spontaneous parametric down conversion, which is when one photon breaks apart and two new photons form. Two detectors will each analyze when the new photons appear, and the devices will apply mathematical functions to determine the offset in time between the two photons, thus synchronizing the clocks.
      While clock synchronization is currently done using GPS, this protocol could make it possible to precisely synchronize clocks in places where GPS access is limited, like the Moon or deep space.
      Syncing Clocks, Linking Telescopes to See More than Ever Before
      When it comes to astronomy, the usual rule of thumb is the bigger the telescope, the better its imagery.
      “If we could hypothetically have a telescope as big as Earth, we would have incredibly high-resolution images of space, but that’s obviously not practical,” said Guan Yang, an optical physicist at NASA Goddard. “What we can do, however, is have multiple telescopes in various locations and have each telescope record the signal with high time precision. Then we can stich their observations together and produce an ultra-high-res image.”
      The idea of linking together the observations of a network of smaller telescopes to affect the power of a larger one is called very long baseline interferometry, or VLBI.
      For VLBI to produce a whole greater than the sum of its parts, the telescopes need high-precision clocks. The telescopes record data alongside timestamps of when the data was recorded. High-powered computers assemble all the data together into one complete observation with greater detail than any one of the telescopes could achieve on its own. This technique is what allowed the Event Horizon Telescope’s network of observatories to produce the first image of a black hole at the center of our galaxy.
      The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. Although the telescopes making up the EHT are not physically connected, they are able to synchronize their recorded data with atomic clocks.EHT Collaboration Yang’s team is developing a clock technology that could be useful for missions looking to take the technique from Earth into space which could unlock many more discoveries.
      An Optical Atomic Clock Built for Space Travel
      Spacecraft navigation systems currently rely on onboard atomic clocks to obtain the most accurate time possible. Holly Leopardi, a physicist at NASA Goddard, is researching optical atomic clocks, a more precise type of atomic clock.
      While optical atomic clocks exist in laboratory settings, Leopardi and her team seek to develop a spacecraft-ready version that will provide more precision.
      The team works on OASIC, which stands for Optical Atomic Strontium Ion Clock. While current spacecraft utilize microwave frequencies, OASIC uses optical frequencies.
      The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft.NASA/Matthew Kaufman “Optical frequencies oscillate much faster than microwave frequencies, so we can have a much finer resolution of counts and more precise timekeeping,” Leopardi said.
      The OASIC technology is about 100 times more precise than the previous state-of-the-art in spacecraft atomic clocks. The enhanced accuracy could enable new types of science that were not previously possible.
      “When you use these ultra-high precision clocks, you can start looking at the fundamental physics changes that occur in space,” Leopardi said, “and that can help us better understand the mechanisms of our universe.”
      The timekeeping technologies unlocked by these teams, could enable new discoveries in our solar system and beyond.
      More on cutting-edge technology development at NASA Goddard By Matthew Kaufman, with additional contributions from Avery Truman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 18, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Technology Communicating and Navigating with Missions Goddard Space Flight Center Technology View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      While astronaut Gene Cernan was on the lunar surface during the Apollo 17 mission, his spacesuit collected loads of lunar dust. The gray, powdery substance stuck to the fabric and entered the capsule causing eye, nose, and throat irritation dubbed “lunar hay fever.” Credit: NASACredit: NASA Moon dust, or regolith, isn’t like the particles on Earth that collect on bookshelves or tabletops – it’s abrasive and it clings to everything. Throughout NASA’s Apollo missions to the Moon, regolith posed a challenge to astronauts and valuable space hardware.

      During the Apollo 17 mission, astronaut Harrison Schmitt described his reaction to breathing in the dust as “lunar hay fever,” experiencing sneezing, watery eyes, and a sore throat. The symptoms went away, but concern for human health is a driving force behind NASA’s extensive research into all forms of lunar soil.
      The need to manage the dust to protect astronaut health and critical technology is already beneficial on Earth in the fight against air pollution.

      Working as a contributor on a habitat for NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP) program, Lunar Outpost Inc. developed an air-quality sensor system to detect and measure the amount of lunar soil in the air that also detects pollutants on Earth. 

      Originally based in Denver, the Golden, Colorado-based company developed an air-quality sensor called the Space Canary and offered the sensor to Lockheed Martin Space for its NextSTEP lunar orbit habitat prototype. After the device was integrated into the habitat’s environmental control system, it provided distinct advantages over traditional equipment.

      Rebranded as Canary-S (Solar), the sensor is now meeting a need for low-cost, wireless air-quality and meteorological monitoring on Earth. The self-contained unit, powered by solar energy and a battery, transmits data using cellular technology. It can measure a variety of pollutants, including particulate matter, carbon monoxide, methane, sulfur dioxide, and volatile organic compounds, among others. The device sends a message up to a secure cloud every minute, where it’s routed to either Lunar Outpost’s web-based dashboard or a customer’s database for viewing and analysis.

      The oil and gas industry uses the Canary-S sensors to provide continuous, real-time monitoring of fugitive gas emissions, and the U.S. Forest Service uses them to monitor forest-fire emissions.

      “Firefighters have been exhibiting symptoms of carbon monoxide poisoning for decades. They thought it was just part of the job,” explained Julian Cyrus, chief operating officer of Lunar Outpost. “But the sensors revealed where and when carbon monoxide levels were sky high, making it possible to issue warnings for firefighters to take precautions.”

      The Canary-S sensors exemplify the life-saving technologies that can come from the collaboration of NASA and industry innovations. 
      Read More Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read Printed Engines Propel the Next Industrial Revolution
      Efforts to 3D print engines produce significant savings in rocketry and beyond
      Article 5 days ago 2 min read Tech Today: Flipping NASA Tech and Sticking the Landing 
      NASA tech adds gecko grip to phone accessory
      Article 1 month ago 2 min read Tech Today: Space Age Swimsuit Reduces Drag, Breaks Records
      SpeedoUSA worked with Langley Research Center to design a swimsuit with reduced surface drag.
      Article 2 months ago Keep Exploring Discover Related Topics
      Technology Transfer and Spinoffs News
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Credit: NASA NASA has awarded a contract to Intuitive Machines, LLC of Houston, to support the agency’s lunar relay systems as part of the Near Space Network, operated by the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
      This Subcategory 2.2 GEO to Cislunar Relay Services is a new firm-fixed-price, multiple award, indefinite-delivery/indefinite-quantity task order contract. The contract has a base period of five years with an additional 5-year option period, with a maximum potential value of $4.82 billion. The base ordering period begins Tuesday, Oct. 1, 2024, through Sept. 30, 2029, with the option period potentially extending the contract through Sept. 30, 2034.
      Lunar relays will play an essential role in NASA’s Artemis campaign to establish a long-term presence on the Moon. These relays will provide vital communication and navigation services for the exploration and scientific study of the Moon’s South Pole region. Without the extended coverage offered by lunar relays, landing opportunities at the Moon’s South Pole will be significantly limited due to the lack of direct communication between potential landing sites and ground stations on Earth.
      The lunar relay award also includes services to support position, navigation, and timing capabilities, which are crucial for ensuring the safety of navigation on and around the lunar surface. Under the contract, Intuitive Machines also will enable NASA to provide communication and navigation services to customer missions in the near space region.
      The initial task award will support the progressive validation of lunar relay capabilities/services for Artemis. NASA anticipates these lunar relay services will be used with human landing systems, the LTV (lunar terrain vehicle), and CLPS (Commercial Lunar Payload Services) flights.
      As lunar relay services become fully operational, they will be integrated into the Near Space Network’s expanding portfolio, enhancing communications and navigation support for future lunar missions. By implementing these new capabilities reliance on NASA’s Deep Space Network will be reduced.
      NASA’s goal is to provide users with communication and navigation services that are secure, reliable, and affordable, so that all NASA users receive the services required by their mission within their latency, accuracy, and availability requirements.
      This is another step in NASA partnering with U.S. industry to build commercial space partners to support NASA missions, including NASA’s long-term Moon to Mars objectives for interoperable communications and navigation capabilities.   This award is part of the Space Communications and Navigation (SCaN) Program and will be executed by the Near Space Network team at NASA Goddard.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Sep 17, 2024 LocationNASA Headquarters Related Terms
      Near Space Network Communicating and Navigating with Missions Goddard Space Flight Center Space Communications & Navigation Program Space Operations Mission Directorate View the full article
    • By NASA
      Podcast art for Universo curioso de la NASA, the agency’s first podcast in Spanish, which returns for a second season in September 2024. Credits: NASA / Krystofer Kim Lee este comunicado de prensa en español aquí.
      In celebration of Hispanic Heritage Month, NASA is releasing new content for Universo curioso de la NASA, the agency’s first Spanish-language podcast, now in its second season. A five-week season starts Tuesday with new episodes released weekly.
      Listen to the preview of the second season of Universo curioso de la NASA.
      In each episode, Universo curioso highlights the contributions of NASA’s Hispanic and Latino workforce to the agency’s work in Earth and space exploration for the benefit of all.
      “Through the Universo curioso de la NASA podcast, we are thrilled to tell the story of NASA’s efforts to open space to more people from across the world,” said Tonya McNair, deputy associate administrator for NASA’s Space Operations Mission Directorate in Washington. “In the second season, you’ll hear from NASA’s Hispanic and Latino workforce, like flight director Diana Trujillo and astronaut Marcos Berríos, helping lead some of the agency’s most vital space exploration missions and inspiring the world through discovery.”
      Episodes focus on some of NASA’s top missions, bringing the wonder of exploration, space technology, and scientific discoveries to Spanish-speaking audiences around the world. 
      “This podcast highlights NASA’s dedication to making knowledge available to all, regardless of their native language,” said Shahra Lambert, NASA senior advisor for engagement. “By sharing the excitement of NASA’s missions in the second most spoken language in the U.S. and around the world, we are amplifying our outreach and possibly paving the way for a more diverse STEM workforce in the future.”
      The first episode of Universo curioso ran in 2021, as part of the agency’s Spanish coverage of the launch of its James Webb Space Telescope. In 2023, the show was selected as a “Podcast We Love” by Apple Podcasts Latin America.
      Hosted by Noelia González, communications specialist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, listeners are invited to go on a journey to one of Jupiter’s icy moons, hear about the first two years of discoveries of the James Webb Space Telescope, as well as learn about an astronaut from Puerto Rico’s and a Colombian flight director’s path to NASA.
      Episodes will cover the upcoming launch of Europa Clipper in October 2024, a mission that aims to determine whether there are places below the surface of Jupiter’s icy moon, Europa, that could support life.
      A complete list of the new episodes, as well as their release dates, is as follows:
      Tuesday, Sept. 17: Introducing the Second Season Tuesday, Sept. 24 Diana Trujillo: From Cali to the Moon and Mars Tuesday, Oct. 1 Europa Clipper: A Poetic Journey to Jupiter’s Moon Tuesday, Oct. 8 Marcos Berríos: How to Become a NASA Astronaut Tuesday, Oct. 15: Exploring Cosmos with Webb Universo curioso de la NASA is a joint initiative of the agency’s Spanish-language communications and audio programs. The new season, as well as previous episodes, are available on Apple Podcasts, Spotify, and NASA’s website.
      Listen to the podcast at:
      https://www.nasa.gov/universo-curioso-de-la-nasa
      -end-
      María José Viñas / Cheryl Warner
      Headquarters, Washington
      240-458-0248 / 202-358-1600
      maria-jose.vinasgarcia@nasa.gov / cheryl.m.warner@nasa.gov
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit around Jupiter. The mission is targeting an Oct. 10, 2024, launch.NASA/JPL-Caltech The first NASA spacecraft dedicated to studying an ocean world beyond Earth, Europa Clipper aims to find out if the ice-encased moon Europa could be habitable.
      NASA’s Europa Clipper spacecraft, the largest the agency has ever built for a planetary mission, will travel 1.8 billion miles (2.9 billion kilometers) from the agency’s Kennedy Space Center in Florida to Europa, an intriguing icy moon of Jupiter. The spacecraft’s launch period opens Thursday, Oct. 10.
      Learn more about how NASA’s Europa Clipper came together – and how it will explore an ocean moon of Jupiter. Credit: NASA/JPL-Caltech  Data from previous NASA missions has provided scientists with strong evidence that an enormous salty ocean lies underneath the frozen surface of the moon. Europa Clipper will orbit Jupiter and conduct 49 close flybys of the moon to gather data needed to determine whether there are places below its thick frozen crust that could support life.
      Here are eight things to know about the mission:
      1. Europa is one of the most promising places to look for currently habitable conditions beyond Earth.
      There’s scientific evidence that the ingredients for life — water, the right chemistry, and energy — may exist at Europa right now. This mission will gather the information scientists need to find out for sure. The moon may hold an internal ocean with twice the water of Earth’s oceans combined, and it may also host organic compounds and energy sources under its surface. If the mission determines that Europa is habitable, it would mean there may be more habitable worlds in our solar system and beyond than we have imagined.
      2. The spacecraft will fly through one of the most punishing radiation environments in our solar system — second only to the Sun’s.
      Jupiter is surrounded by a gigantic magnetic field 20,000 times stronger than Earth’s. As the field spins, it captures and accelerates charged particles, creating radiation that can damage spacecraft. Mission engineers designed a spacecraft vault to shield sensitive electronics from radiation, and they plotted orbits that will limit the time Europa Clipper spends in most radiation-heavy areas around Jupiter.
      3. Europa Clipper will orbit Jupiter, studying Europa while flying by the moon dozens of times.
      The spacecraft will make looping orbits around Jupiter that bring it close to Europa for 49 science-dedicated flybys. On each orbit, the spacecraft will spend less than a day in Jupiter’s dangerous radiation zone near Europa before zipping back out. Two to three weeks later, it will repeat the process, making another flyby.
      4. Europa Clipper features NASA’s most sophisticated suite of science instruments yet.
      To determine if Europa is habitable, Europa Clipper must assess the moon’s interior, composition, and geology. The spacecraft carries nine science instruments and a gravity experiment that uses the telecommunications system. In order to obtain the best science during each flyby, all the science instruments will operate simultaneously on every pass. Scientists will then layer the data together to paint a full picture of the moon.
      5. With antennas and solar arrays fully deployed, Europa Clipper is the largest spacecraft NASA has ever developed for a planetary mission.
      The spacecraft extends 100 feet (30.5 meters) from one end to the other and about 58 feet (17.6 meters) across. That’s bigger than a basketball court, thanks in large part to the solar arrays, which need to be huge so they can collect enough sunlight while near Jupiter to power the instruments, electronics, and other subsystems.
      6. It’s a long journey to Jupiter.
      Jupiter is on average some 480 million miles (about 770 million kilometers) from Earth; both planets are in motion, and a spacecraft can carry only a limited amount of fuel. Mission planners are sending Europa Clipper past Mars and then Earth, using the planets’ gravity as a slingshot to add speed to the spacecraft’s trek. After journeying about 1.8 billion miles (2.9 billion kilometers) over 5½ years, the spacecraft will fire its engines to enter orbit around Jupiter in 2030.
      7. Institutions across the U.S. and Europe have contributed to Europa Clipper.
      Currently, about a thousand people work on the mission, including more than 220 scientists from both the U.S. and Europe. Since the mission was officially approved in 2015, more than 4,000 people have contributed to Europa Clipper, including teams who work for contractors and subcontractors.
      8. More than 2.6 million of us are riding along with the spacecraft, bringing greetings from one water world to another.
      As part of a mission campaign called “Message in a Bottle,” the spacecraft is carrying a poem by U.S. Poet Laureate Ada Limón, cosigned by millions of people from nearly every country in the world. Their names have been stenciled onto a microchip attached to a tantalum metal plate that seals the spacecraft’s electronics vault. The plate also features waveforms of people saying the word “water” in over 100 spoken languages.
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. The main spacecraft body was designed by APL in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.
      NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft, which will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy.
      Find more information about Europa here:
      https://europa.nasa.gov
      Europa Clipper Teachable Moment See Europa’s Chaos Terrain in Crisp Detail Europa Clipper Gets Its Super-Size Solar Arrays News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-6215
      gretchen.p.mccartney@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-125
      Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      Europa Clipper Jet Propulsion Laboratory Jupiter The Solar System Explore More
      4 min read NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training
      At first glance, it seems like a scene from an excursion on the Moon’s surface…except…
      Article 4 days ago 3 min read NASA to Develop Lunar Time Standard for Exploration Initiatives 
      Article 5 days ago 23 min read The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon
      The next full Moon will be Tuesday, September 17, 2024, at 10:35 PM EDT. The…
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...