Jump to content

An Ancient Partnership: Co-Evolution of Earth Environments and Microbial LifeAn Ancient Partnership:


Recommended Posts

  • Publishers
Posted

NASA-supported scientists have examined the long and intricately linked history of microbial life and the Earth’s environment. By reviewing the current state of knowledge across fields like microbiology, molecular biology, and geology, the study looks at how microorganisms have both shaped and been shaped by chemical properties of our planet’s oceans, land, and atmosphere. The study combines data across multiple fields of study and discusses how information on the complicated history of life on our planet from a single field cannot be viewed in isolation.

An illustration of ancient Earth. It appears yellow/orange in color with hazy clouds covering much of the surface. The planet sits in a field of black.
An artist interpretation of the hazy atmosphere of Archean Earth – a pale orange dot.
NASA’s Goddard Space Flight Center/Francis Reddy

The first life on Earth was microbial. Today the vast majority of our planet’s biomass is still made up of tiny, single-celled microorganisms. Although they’re abundant, the history of microbes can be a challenge for astrobiologists to study. Microbes don’t leave bones, shells or other large fossils behind like dinosaurs, fish or other large organisms. Because of this, scientists must look at different evidence to understand the evolution of microbial life through time.

In order to study ancient microbes on Earth, astrobiologists look for isotopic fingerprints in rocks that can be used to identify the metabolisms of ancient communities. Metabolism refers to the conversion of food into energy, and happens in all living things. Many elements (think carbon (C), nitrogen (N), Sulfur (S), iron (Fe)) are involved in microbial metabolism. As microbes process these elements, they cause isotopic changes that scientists can spot in the rock record. Microbes also help to control how these elements are deposited and cycled in the environment, affecting geology and chemistry at both local and global scales (consider the role of microbes in the carbon cycle on Earth today).

Perspective photograph of a rocky outcrop. In the foreground, the rock is streaked with shades of red and orange, almost appearing as if it is flowing down like liquid from the peak of rock at the summit of the outcrop in the distance.
This photograph shows a section of the Marble Bar formation in the Pilbara region of north-western Western Australia. The bands of color in the rock are the result of high amounts of certain minerals, including iron, that may have resulted from microbial activity on the ancient Earth.
NASA Astrobiology/Mike Toillion

For an example of geological evidence of microbial metabolism, we can consider the formation of banded iron formations (BIFs) on the ancient seafloor. These colorful layers of alternating iron- and silicon-rich sediment were formed from 3.8 billion to 1.8 billion years ago and are associated with some of the oldest rock formations on Earth. The red colors they exhibit are from their high iron content, showing us that the ocean of Earth was rich in iron during the 2 billion years in which these rocks were forming.

Another way to study ancient microbial life is to look back along the evolutionary information contained in the genetics of life today. Combining this genetic information from molecular biology with geobiological information from the rock record can help astrobiologists understand the connections between the shared evolution of the early Earth and early life.

In the new study, the team of researchers provide a review of current knowledge, gleaning information into the early metabolisms used by microbial life, the timing of when these metabolisms evolved, and how these processes are linked to major chemical and physical changes on Earth, such as the oxygenation of the oceans and atmosphere.

Over time, the prevalence of oxygen on Earth has varied dramatically, in the ocean, in the atmosphere, and on land. These changes impacted both the evolution of the biosphere and the environment. For instance, as the activity of photosynthetic organisms raised oxygen levels in the atmosphere, creating new environments for microbial life to inhabit. Different nutrients were made accessible to life to fuel growth. At the same time, microbes that couldn’t survive in the presence of oxygen had to adapt, perish, or find a way to survive in environments where oxygen didn’t persist, such as deep in the Earth’s subsurface.

The clear, light blue water of Lake Salda fills most of the frame. Across the lake, hills can be seen on the horizon. Beneath the water are yellowish structures that resemble balls of coral that are almost brain-like.
Rocks along the shoreline of Lake Salda in Turkey were formed over time by microbes that trap minerals in the water. These microbialites were once a major form of life on Earth.

The new study explains our understanding of how oxygen levels have changed over time and spatial scales. The authors map different types of microbial metabolism, such as photosynthesis, to this history to better understand the “cause-and-effect relationship” between oxygen and the evolution of life on Earth. The paper provides important context for major changes in the course of evolution for the biosphere and the planet.

By carefully considering the history of different types of microbial metabolisms on Earth, the review paper shows how biogeochemical cycles on our planet are inextricably linked through time over both local and global scales. The authors also discuss significant gaps in our knowledge that limit interpretations. For instance, we do not know how large the young biosphere on Earth was, which limits our ability to estimate the global effects of various metabolisms during Earth’s earliest years. Similarly, when using genetic information to look back along the tree of life, scientists can estimate when certain genes first appeared (and thereby what types of metabolisms could have been used at the time in living cells). However, the evolution of a new type of metabolism at a point in history does not necessarily mean that that metabolism was common or had a large enough effect in the environment to leave evidence in the rock record.

According to the authors, “The history of microbial life marched in step with the history of the
oceans, land and atmosphere, and our understanding remains limited by how much we still do not know about the environments of the early Earth.”

Illustration of a planet and its star on an empty black background. The planet is large, in the foreground at the center and the star is smaller, in the background at the upper left.
This is an illustration of exoplanet WASP-39 b, also known as Bocaprins. NASA’s James Webb Space Telescope provided the most detailed analysis of an exoplanet atmosphere ever with WASP-39 b analysis released in November 2022. Webb’s Near-Infrared Spectrograph (NIRSpec) showed unambiguous evidence for carbon dioxide in the atmosphere, while previous observations from NASA’s Hubble and Spitzer Space Telescopes, as well as other telescopes, indicate the presence of water vapor, sodium, and potassium. The planet probably has clouds and some form of weather, but it may not have atmospheric bands like those of Jupiter and Saturn. This illustration is based on indirect transit observations from Webb as well as other space and ground-based telescopes. Webb has not captured a direct image of this planet.
NASA, ESA, CSA, Joseph Olmsted (STScI)

The study also has wider implications in the search for life beyond Earth. Understanding the co-evolution of life and the environment can help scientists better understand the conditions necessary for a planet to be habitable. The interconnections between life and the environment also provide important clues in the search for biosignature gases in the atmospheres of planets that orbit distant stars.

The study, “Co‐evolution of early Earth environments and microbial life,” was published in the journal Nature Reviews. Additional information on the study is available from the University of California, Riverside.

Click here to return to the NASA Astrobiology page.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      In a world first, ESA and Telesat have successfully connected a Low Earth Orbit (LEO) satellite to the ground using 5G Non-Terrestrial Network (NTN) technology in the Ka-band frequency range, marking a crucial step towards making space-based connections as simple as using a mobile phone.
      View the full article
    • By European Space Agency
      Image: With the festive season approaching, even Earth-observing satellites are getting into the spirit, capturing a stunning compilation of European cities that resemble stars. View the full article
    • By NASA
      Caption: An artist’s concept of the International Space Station orbiting Earth. In the distance is the Moon, and a red star representing Mars.Credit: NASA As part of the agency’s efforts to enable broader use of space, NASA has released its final goals and objectives for low Earth orbit, defining the long-term approach toward advancing microgravity science, technology, and exploration for the benefit of all. Developed with input from a wide range of stakeholders, NASA’s Low Earth Orbit Microgravity Strategy will guide the agency toward the next generation of continuous human presence in orbit, enable greater economic growth, and maintain international partnerships.
      “As we near the retirement of the International Space Station in 2030, these objectives are a pivotal next step in solidifying U.S. leadership in space,” said NASA Deputy Administrator Pam Melroy. “Our consultation with industry, academia, and international partners has helped refine a visionary roadmap for our future in low Earth orbit, which will be enabled by a continuous human presence. Together, we are ensuring that the benefits of exploring space continue to grow – advancing science, innovation, and opportunities for all, while preparing for humanity’s next giant leap of exploring the Moon, Mars and beyond.”
      In early 2024, NASA initiated a planning process that included drafting an initial set of goals and objectives for the low Earth orbit microgravity environment and seeking feedback from its workforce, government partners, industry, academia, international space agencies, and the public. The agency reviewed more than 1,800 comments and hosted two workshops, resulting in essential adjustments to the goals and objectives to better align with its partners. The final framework includes 13 goals and 44 objectives across seven key areas: commercial low Earth orbit infrastructure, operations, science, research and technology development for exploration, international cooperation, workforce development and science, technology, engineering, and mathematics (STEM) engagement, and public engagement.
      The agency’s efforts in low Earth orbit are integral to its broader ambitions for deep space exploration. The microgravity environment in low Earth orbit provides a cost-effective, easily accessible proving ground for technologies and research necessary for human missions to explore the solar system. With most of the journey to Moon and Mars occurring in microgravity, the objectives give the opportunity to continue vital human research, test future exploration systems, and retain the critical skills needed to operate in the microgravity environment.
      “These finalized objectives represent a clear path forward as NASA transitions from the International Space Station to a new era of commercial space stations,” said Robyn Gatens, director of the International Space Station and acting director of commercial spaceflight. “Low Earth orbit will remain a hub for scientific discovery, technological advancement, and international cooperation, while making strategic investments in a commercial space ecosystem that benefits not just NASA, but the entire space community.”
      The low Earth orbit microgravity goals and objectives, combined with significant stakeholder engagement, drive NASA’s need to maintain an unbroken, continuous heartbeat of humans in the commercial low Earth orbit destinations era. NASA requires long-duration flights to mitigate risk for future trips to the Red Planet. To ensure reliable access to and use of low Earth orbit, a diversity of providers operating on a regular cadence is essential. The objectives will also guide the development of requirements for future commercial space stations that will support NASA’s missions, while reducing risk for human missions to Mars, preserving operational skills, advancing critical scientific research, and sustaining engagement with international and commercial partners.
      “Collaboration and consultation remain a cornerstone of our low Earth orbit strategy,” said John Keefe, director of cross-agency strategy integration at NASA. “The objectives we’ve established will help NASA craft a work plan that ensures NASA is positioned to meet current and future needs and prioritizes the development of critical capabilities for low Earth orbit.”
      The low Earth orbit microgravity goals and objectives are available online at:
      https://go.nasa.gov/3DsMtNI
      -end-
      Amber Jacobson
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov
      Share
      Details
      Last Updated Dec 16, 2024 LocationNASA Headquarters Related Terms
      Pamela A. Melroy View the full article
    • By European Space Agency
      Image: These summer images from the Copernicus Sentinel-2 and Sentinel-1 missions showcase different satellite views of Greenland’s west coast. View the full article
    • By NASA
      NASA/Joel Kowsky On Dec. 4, 2024, NASA astronauts Loral O’Hara, left, and Jasmin Moghbeli spent a moment in part of the Earth Information Center, an immersive experience combining live NASA data sets with innovative data visualization and storytelling at NASA Headquarters in Washington.
      O’Hara and Moghbeli spent six months in space as part of Expedition 70 aboard the International Space Station. On Nov. 1, 2023, they performed a spacewalk together that lasted 6 hours and 42 minutes.
      Image credit: NASA/Joel Kowsky
      View the full article
  • Check out these Videos

×
×
  • Create New...