Jump to content

Heart of Hertz 2.0


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Dr. Rainee Simons (right) and Dr. Félix Miranda work together to create technology supporting heart health at NASA’s Glenn Research Center in Cleveland.Credit: NASA Prioritizing health is important on Earth, and it’s even more important in space. Exploring beyond the Earth’s surface exposes humans to conditions that can impact blood pressure, bone density, immune health, and much more. With this in mind, two NASA inventors joined forces 20 years ago to create a way to someday monitor astronaut heart health on long-duration spaceflight missions. This technology is now being used to monitor the health of patients with heart failure on Earth through a commercial product that is slated to launch in late 2024.
      NASA inventors Dr. Rainee Simons, senior microwave communications engineer, and Dr. Félix Miranda, deputy chief of the Communications and Intelligent Systems Division, applied their expertise in radio frequency integrated circuits and antennas to create a miniature implantable sensor system to keep track of astronaut health in space. The technology, which was created at NASA’s Glenn Research Center in Cleveland with seed funds from the agency’s Technology Transfer Office, consists of a small bio-implanted sensor that can transmit a person’s health status from a sensor to a handheld device. The sensor is battery-less and wireless.
      “You’re able to insert the sensor and bring it up to the heart or the aorta like a stent – the same process as in a stent implant,” Simons said. “No major surgery is needed for implantation, and operating the external handheld device, by the patient, is simple and easy.”
      After Glenn patented the invention, Dr. Anthony Nunez, a heart surgeon, and Harry Rowland, a mechanical engineer, licensed the technology and founded a digital health medical technology company in 2007 called Endotronix, now an Edwards Lifesciences company. The company focuses on enabling proactive heart failure management with data-driven patient-to-physician solutions that detect dangers, based on the Glenn technology. The Endotronix primary monitoring system is called the Cordella Pulmonary Artery (PA) Sensor System. Dr. Nunez became aware of the technology while reading a technical journal that featured the concept, and he saw parallels that could be used in the medical technology industry.
      The concept has proven to be an aid for heart failure management through several clinical trials, and patients have experienced improvements in their quality of life. Based on the outcome of Endotronix’s clinical testing to demonstrate safety and effectiveness, in June 2024 the U.S. Food and Drug Administration granted premarket approval to the Cordella PA Sensor System. The system is meant to help clinicians remotely assess, treat, and manage heart failure in patients at home with the goal of reducing hospitalizations.
      “If you look at the statistics of how many people have congestive heart failure, high blood pressure… it’s a lot of people,” Miranda said. “To have the medical community saying we have a device that started from NASA’s intellectual property – and it could help people worldwide to be healthy, to enjoy life, to go about their business – is highly gratifying, and it’s very consistent with NASA’s mission to do work for the benefit of all.”
      Explore More
      2 min read Controlled Propulsion for Gentle Landings 
      A valve designed for NASA rover landings enables effective stage separations for commercial spaceflight
      Article 40 mins ago 2 min read Sail Along with NASA’s Solar Sail Tech Demo in Real-Time Simulation
      NASA invites the public to virtually sail along with the Advanced Composite Solar Sail System‘s space…
      Article 21 hours ago 4 min read Lunar Autonomy Mobility Pathfinder: An OTPS-Sponsored Workshop
      Article 1 day ago View the full article
    • By NASA
      2 min read
      Hubble Examines an Active Galaxy Near the Lion’s Heart
      This NASA/ESA Hubble Space Telescope features the elliptical galaxy Messier 105. ESA/Hubble & NASA, C. Sarazin et al. It might appear featureless and unexciting at first glance, but NASA/ESA Hubble Space Telescope observations of this elliptical galaxy — known as Messier 105 — show that the stars near the galaxy’s center are moving very rapidly. Astronomers have concluded that these stars are zooming around a supermassive black hole with an estimated mass of 200 million Suns! This black hole releases huge amounts of energy as it consumes matter falling into it, making the system an active galactic nucleus that causes the galaxy’s center to shine far brighter than its surroundings.
      Hubble also surprised astronomers by revealing a few young stars and clusters in Messier 105, a galaxy thought to be “dead” and incapable of star formation. Astronomers now think that Messier 105 forms roughly one Sun-like star every 10,000 years. Astronomers also spotted star-forming activity in a vast ring of hydrogen gas encircling both Messier 105 and its closest neighbor, the lenticular galaxy NGC 3384.
      Discovered in 1781, Messier 105 lies about 30 million light-years away in the constellation of Leo (The Lion) and is the brightest elliptical galaxy within the Leo I galaxy group.
      Text Credit: European Space Agency (ESA)

      Download the image

      Explore More

      Hubble Space Telescope


      Hubble’s Galaxies


      Hubble’s Messier Catalog: Messier 105

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jun 27, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Elliptical Galaxies Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Explore More With Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      What Did Hubble See on Your Birthday?



      Name That Nebula



      Hubble E-books


      View the full article
    • By NASA
      5 Min Read Webb Finds Evidence for Neutron Star at Heart of Young Supernova Remnant
      The James Webb Space Telescope has observed the best evidence yet for emission from a neutron star. Credits:
      NASA, ESA, CSA, STScI, C. Fransson (Stockholm University), M. Matsuura (Cardiff University), M. J. Barlow (University College London), P. J. Kavanagh (Maynooth University), J. Larsson (KTH Royal Institute of Technology) NASA’s James Webb Space Telescope has found the best evidence yet for emission from a neutron star at the site of a recently observed supernova. The supernova, known as SN 1987A, was a core-collapse supernova, meaning the compacted remains at its core formed either a neutron star or a black hole. Evidence for such a compact object has long been sought, and while indirect evidence for the presence of a neutron star has previously been found, this is the first time that the effects of high-energy emission from the probable young neutron star have been detected.
      Supernovae – the explosive final death throes of some massive stars – blast out within hours, and the brightness of the explosion peaks within a few months. The remains of the exploding star will continue to evolve at a rapid rate over the following decades, offering a rare opportunity for astronomers to study a key astronomical process in real time.
      Supernova 1987A
      The supernova SN 1987A occurred 160,000 light-years from Earth in the Large Magellanic Cloud. It was first observed on Earth in February 1987, and its brightness peaked in May of that year. It was the first supernova that could be seen with the naked eye since Kepler’s Supernova was observed in 1604.
      About two hours prior to the first visible-light observation of SN 1987A, three observatories around the world detected a burst of neutrinos lasting only a few seconds. The two different types of observations were linked to the same supernova event, and provided important evidence to inform the theory of how core-collapse supernovae take place. This theory included the expectation that this type of supernova would form a neutron star or a black hole. Astronomers have searched for evidence for one or the other of these compact objects at the center of the expanding remnant material ever since.
      Indirect evidence for the presence of a neutron star at the center of the remnant has been found in the past few years, and observations of much older supernova remnants –such as the Crab Nebula – confirm that neutron stars are found in many supernova remnants. However, no direct evidence of a neutron star in the aftermath of SN 1987A (or any other such recent supernova explosion) had been observed, until now.
      Image: Supernova 1987A
      The James Webb Space Telescope has observed the best evidence yet for emission from a neutron star at the site of a well-known and recently-observed supernova known as SN 1987A. At left is a NIRCam (Near-Infrared Camera) image released in 2023. The image at top right shows light from singly ionized argon (Argon II) captured by the Medium Resolution Spectrograph (MRS) mode of MIRI (Mid-Infrared Instrument). The image at bottom right shows light from multiply ionized argon captured by the NIRSpec (Near-Infrared Spectrograph). Both instruments show a strong signal from the center of the supernova remnant. This indicated to the science team that there is a source of high-energy radiation there, most likely a neutron star. NASA, ESA, CSA, STScI, C. Fransson (Stockholm University), M. Matsuura (Cardiff University), M. J. Barlow (University College London), P. J. Kavanagh (Maynooth University), J. Larsson (KTH Royal Institute of Technology) Claes Fransson of Stockholm University, and the lead author on this study, explained: “From theoretical models of SN 1987A, the 10-second burst of neutrinos observed just before the supernova implied that a neutron star or black hole was formed in the explosion. But we have not observed any compelling signature of such a newborn object from any supernova explosion. With this observatory, we have now found direct evidence for emission triggered by the newborn compact object, most likely a neutron star.”
      Webb’s Observations of SN 1987A
      Webb began science observations in July 2022, and the Webb observations behind this work were taken on July 16, making the SN 1987A remnant one of the first objects observed by Webb. The team used the Medium Resolution Spectrograph (MRS) mode of Webb’s MIRI (Mid-Infrared Instrument), which members of the same team helped to develop. The MRS is a type of instrument known as an Integral Field Unit (IFU).
      IFUs are able to image an object and take a spectrum of it at the same time. An IFU forms a spectrum at each pixel, allowing observers to see spectroscopic differences across the object. Analysis of the Doppler shift of each spectrum also permits the evaluation of the velocity at each position.
      Spectral analysis of the results showed a strong signal due to ionized argon from the center of the ejected material that surrounds the original site of SN 1987A. Subsequent observations using Webb’s NIRSpec (Near-Infrared Spectrograph) IFU at shorter wavelengths found even more heavily ionized chemical elements, particularly five times ionized argon (meaning argon atoms that have lost five of their 18 electrons). Such ions require highly energetic photons to form, and those photons have to come from somewhere.
      “To create these ions that we observed in the ejecta, it was clear that there had to be a source of high-energy radiation in the center of the SN 1987A remnant,” Fransson said. “In the paper we discuss different possibilities, finding that only a few scenarios are likely, and all of these involve a newly born neutron star.”
      More observations are planned this year, with Webb and ground-based telescopes. The research team hopes ongoing study will provide more clarity about exactly what is happening in the heart of the SN 1987A remnant. These observations will hopefully stimulate the development of more detailed models, ultimately enabling astronomers to better understand not just SN 1987A, but all core-collapse supernovae.
      These findings were published in the journal Science.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      Downloads
      Right click the images in this article to open a larger version in a new tab/window.
      Download full resolution images for this article from the Space Telescope Science Institute.
      Media Contacts
      Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Star LifeCycle
      Star Types
      More Webb News – https://science.nasa.gov/mission/webb/latestnews/
      More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/
      Webb Mission Page – https://science.nasa.gov/mission/webb/
      Related For Kids
      What is a supernova?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Discover the universe: Learn about the history of the cosmos, what it’s made of, and so much more.

      Share








      Details
      Last Updated Feb 22, 2024 Editor Marty McCoy Related Terms
      Astrophysics Goddard Space Flight Center James Webb Space Telescope (JWST) Neutron Stars Science & Research Stars Supernovae The Universe View the full article
    • By European Space Agency
      The NASA/ESA/CSA James Webb Space Telescope has found the best evidence yet for emission from a neutron star at the site of a recently observed supernova. The supernova, known as SN 1987A, occurred 160 000 light-years from Earth in the Large Magellanic Cloud. SN 1987A was observed on Earth in 1987, the first supernova that was visible to the naked eye since 1604 — before the advent of telescopes.
      View the full article
    • By European Space Agency
      Image: Heart of ESA vacuum testing View the full article
  • Check out these Videos

×
×
  • Create New...