Members Can Post Anonymously On This Site
Double trouble: Gaia hit by micrometeoroid and solar storm
-
Similar Topics
-
By NASA
Caption: Illustration of the four PUNCH spacecraft in low Earth orbit. Credit: NASA’s Goddard Space Flight Center Conceptual Image Lab
NASA will hold a media teleconference at 2 p.m. EST on Tuesday, Feb. 4, to share information about the agency’s upcoming PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which is targeted to launch no earlier than Thursday, Feb. 27.
The agency’s PUNCH mission is a constellation of four small satellites. When they arrive in low Earth orbit, the satellites will make global, 3D observations of the Sun’s outer atmosphere, the corona, and help NASA learn how the mass and energy there become solar wind. By imaging the Sun’s corona and the solar wind together, scientists hope to better understand the entire inner heliosphere – Sun, solar wind, and Earth – as a single connected system.
Audio of the teleconference will stream live on the agency’s website at:
https://www.nasa.gov/live
Participants include:
Madhulika Guhathakurta, NASA program scientist, NASA Headquarters Nicholeen Viall, PUNCH mission scientist, NASA’s Goddard Space Flight Center Craig DeForest, PUNCH principal investigator, Southwest Research Institute To participate in the media teleconference, media must RSVP no later than 12 p.m. on Feb. 4 to: Abbey Interrante at: abbey.a.interrante@nasa.gov. NASA’s media accreditation policy is available online.
The PUNCH mission will share a ride to space with NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) space telescope on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
The Southwest Research Institute in Boulder, Colorado, leads the PUNCH mission. The mission is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington.
To learn more about PUNCH, please visit:
https://nasa.gov/punch
-end-
Karen Fox
Headquarters, Washington
202-358-1600
karen.fox@nasa.gov
Sarah Frazier
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
View the full article
-
By NASA
Crews conduct a solar array deployment test on the spacecraft of NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located inside Vandenberg Space Force Base in California on Tuesday, Jan. 21, 2025.USSF 30th Space Wing/Antonio Ramos Technicians supporting NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission deployed and tested the spacecraft’s solar arrays at the Astrotech Space Operations processing facility at Vandenberg Space Force Base in California ahead of its launch next month.
The arrays, essential for powering instruments and systems, mark another milestone in preparing PUNCH for its mission to study the Sun’s outer atmosphere as it transitions into the solar wind. Technicians performed the tests in a specialized cleanroom environment to prevent contamination and protect the sensitive equipment.
Comprised of four suitcase-sized satellites working together as a constellation, PUNCH will capture continuous 3D images of the Sun’s corona and the solar wind’s journey into the solar system. Led by the Southwest Research Institute (SwRI) for NASA, the mission aims to deepen our understanding of the Sun and solar wind and how they affect humanity’s technology on Earth and our continued exploration of the solar system.
Successful solar array testing brings the spacecraft another step toward readiness for launch. The agency’s PUNCH mission is targeting liftoff as a rideshare with NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) on a SpaceX Falcon 9 rocket from Vandenberg’s Space Launch Complex 4E no earlier than Thursday, Feb. 27.
Image credit: USSF 30th Space Wing/Antonio Ramos
View the full article
-
By NASA
3 min read
NASA Solar Observatory Sees Coronal Loops Flicker Before Big Flares
For decades, scientists have tried in vain to accurately predict solar flares — intense bursts of light on the Sun that can send a flurry of charged particles into the solar system. Now, using NASA’s Solar Dynamics Observatory, one team has identified flickering loops in the solar atmosphere, or corona, that seem to signal when the Sun is about to unleash a large flare.
These warning signs could help NASA and other stakeholders protect astronauts as well as technology both in space and on the ground from hazardous space weather.
NASA’s Solar Dynamics Observatory captured this image of coronal loops above an active region on the Sun in mid-January 2012. The image was taken in the 171 angstrom wavelength of extreme ultraviolet light. NASA/Solar Dynamics Observatory Led by heliophysicist Emily Mason of Predictive Sciences Inc. in San Diego, California, the team studied arch-like structures called coronal loops along the edge of the Sun. Coronal loops rise from magnetically driven active regions on the Sun, where solar flares also originate.
The team looked at coronal loops near 50 strong solar flares, analyzing how their brightness in extreme ultraviolet light varied in the hours before a flare compared to loops above non-flaring regions. Like flashing warning lights, the loops above flaring regions varied much more than those above non-flaring regions.
“We found that some of the extreme ultraviolet light above active regions flickers erratically for a few hours before a solar flare,” Mason explained. “The results are really important for understanding flares and may improve our ability to predict dangerous space weather.”
Published in the Astrophysical Journal Letters in December 2024 and presented on Jan. 15, 2025, at a press conference during the 245th meeting of the American Astronomical Society, the results also hint that the flickering reaches a peak earlier for stronger flares. However, the team says more observations are needed to confirm this link.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
The four panels in this movie show brightness changes in coronal loops in four different wavelengths of extreme ultraviolet light (131, 171, 193, and 304 angstroms) before a solar flare in December 2011. The images were taken by the Atmospheric Imaging Assembly (AIA) on NASA’s Solar Dynamics Observatory and processed to reveal flickering in the coronal loops. NASA/Solar Dynamics Observatory/JHelioviewer/E. Mason Other researchers have tried to predict solar flares by examining magnetic fields on the Sun, or by looking for consistent trends in other coronal loop features. However, Mason and her colleagues believe that measuring the brightness variations in coronal loops could provide more precise warnings than those methods — signaling oncoming flares 2 to 6 hours ahead of time with 60 to 80 percent accuracy.
“A lot of the predictive schemes that have been developed are still predicting the likelihood of flares in a given time period and not necessarily exact timing,” said team member Seth Garland of the Air Force Institute of Technology at Wright-Patterson Air Force Base in Ohio.
Each solar flare is like a snowflake — every single flare is unique.
Kara kniezewski
Air Force Institute of Technology
“The Sun’s corona is a dynamic environment, and each solar flare is like a snowflake — every single flare is unique,” said team member Kara Kniezewski, a graduate student at the Air Force Institute of Technology and lead author of the paper. “We find that searching for periods of ‘chaotic’ behavior in the coronal loop emission, rather than specific trends, provide a much more consistent metric and may also correlate with how strong a flare will be.”
The scientists hope their findings about coronal loops can eventually be used to help keep astronauts, spacecraft, electrical grids, and other assets safe from the harmful radiation that accompanies solar flares. For example, an automated system could look for brightness changes in coronal loops in real-time images from the Solar Dynamics Observatory and issue alerts.
“Previous work by other researchers reports some interesting prediction metrics,” said co-author Vadim Uritsky of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the Catholic University of Washington in D.C. “We could build on this and come up with a well-tested and, ideally, simpler indicator ready for the leap from research to operations.”
By Vanessa Thomas
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jan 15, 2025 Related Terms
Goddard Space Flight Center Heliophysics Heliophysics Division Space Weather The Sun Explore More
7 min read NASA Celebrates Edwin Hubble’s Discovery of a New Universe
Article
5 hours ago
6 min read NASA’s Webb Reveals Intricate Layers of Interstellar Dust, Gas
Article
1 day ago
6 min read Newfound Galaxy Class May Indicate Early Black Hole Growth, Webb Finds
Article
1 day ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
The European Space Agency’s Milky Way-mapper Gaia has completed the sky-scanning phase of its mission, racking up more than three trillion observations of about two billion stars and other objects over the last decade to revolutionise the view of our home galaxy and cosmic neighbourhood.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.