Jump to content

Rebekah Hounsell: Tracking Cosmic Light to Untangle the Universe’s Darkest Mysteries


NASA

Recommended Posts

  • Publishers

Rebekah Hounsell is an assistant research scientist working on ways to optimize and build infrastructure for future observations made by the Nancy Grace Roman Space Telescope. The mission will shed light on many astrophysics topics, like dark energy, which are currently shrouded in mystery. Rebekah also works as a support scientist for the TESS (Transiting Exoplanet Survey Satellite) mission, helping scientists access and analyze data.

Name: Rebekah Hounsell
Title: Assistant Research Scientist
Formal Job Classification: Support Scientist for the TESS mission and Co-Principal Investigator of the Roman Supernova Project Infrastructure Team (PIT)
Organization: Code 667.0

hounsel-rebekah-copy.jpg?w=1638
Rebekah Hounsell knew she wanted to study space from a very young age. Now, she’s a scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md.
NASA/Chris Gunn

What do you do and what is most interesting about your role at Goddard?

I am fortunate to have several roles at Goddard. I am a support scientist for TESS. Here I aid the community in accessing and analyzing TESS data. I am a co-principal investigator of a Roman project infrastructure team, focusing on building infrastructure to support supernova cosmology with the Roman HLTDS (High Latitude Time-Domain Survey). In addition, I am part of the Physics of the Cosmos program analysis group executive committee, co-chairing both the Cosmic Structure Science interest group and the Time-Domain and Multi-Messenger Astrophysics Science interest group. In these roles I have been fortunate enough to get a glimpse into how missions such as TESS and Roman work and how we can make them a success for the community. Missions like TESS are paving the way for future wide area surveys like Roman, providing a plethora of high cadence transient and variable star data, which can be used to gain a better understanding of our universe and our place within it.

How will your current work influence the Nancy Grace Roman Space Telescope’s future observations?

The Roman team I am leading is tasked with developing a pixels-to-cosmology pipeline for the analysis of supernova data from the HLTDS. What this means is that we will develop tools to aid the community in obtaining supernova lightcurves and prism spectra, which are precise enough to be used in testing various cosmological modes. We are also working to develop tools which will allow the community to test various HLTDS designs, adjusting cadence, filters, exposure times, etc., to best optimize its output for their science.

What got you interested in astrophysics? What was your path to your current role?

When I was a child I lived in a very rural area in England, with little to no light pollution. I had a wonderful view of the night sky and was fascinated by stars. I remember when I found out that the universe was expanding and my first thought was “into what?” I think it was that which fueled my curiosity about space and pushed me into astrophysics. At about 10 years old, I decided astrophysics was the path for me, and after that I really started to focus on physics and math at school.

At 18, 19 I went to Liverpool University/Liverpool John Moores and completed my master’s in astrophysics in 2008. I then went on to obtain my Ph.D., focusing on classical and recurrent novae. In 2012 I received my first postdoc at STScI (the Space Telescope Science Institute in Baltimore). It was at STScI that I learned about how the instruments operating on Hubble worked and figured out that what I really loved doing was working on data and improving it. At the time however, I wasn’t ready to leave academia altogether, so I took another postdoc at the University of Illinois Champaign Urbana/UC Santa Cruz. It was here that I first started working on Roman, only back then it was known as WFIRST. I was a member of a Supernova Science Investigation Team for WFIRST and worked to optimize the design of what was then known as the SN survey, later to become the HLTDS. During this time I published a paper that created some of the most realistic simulations of the survey, including various statistical and systematic effects. After this I headed to the University of Pennsylvania to work on core collapse supernovae from the Dark Energy Survey. This was an exciting data set, but again I realized what I really liked doing was working on data from or for a mission. As such I took my current job at NASA.

A woman stands beside a telescope model
Rebekah stands by a model of NASA’s upcoming Nancy Grace Roman Space Telescope. The observatory’s deployable aperture cover, or sun shade, is visible in the background in the largest clean room at Goddard.
NASA/David Friedlander

What are you most looking forward to exploring through Roman’s eyes?

Given the nature of the mission, Roman is going to discover a plethora of transient events. Some of these will be extremely rare and if caught in one of Roman’s high cadenced, deep fields, the data obtained will be able to shed new light on the physics driving these phenomena. I am also excited about these data being used with those from other observatories including the Vera C. Rubin Observatory and NASA’s James Webb Space Telescope.

What has surprised you the most about the universe as you’ve learned more about it?

We are still discovering so many new things which shed new light on the universe, its evolution, and our place in it. In recent years we have learned about kilonovae, gravitational waves, and we’ve discovered various diverse supernovae. There are so many extreme and complex events that we are still trying to understand, and I suspect that Roman will reveal even more.

What is your favorite thing about working for NASA?

There is no one path to working at NASA. I have met so many people who entered into the field following completely different paths than myself. I love this. We all have something different to bring to the table and those differences are what makes NASA what it is today.

A woman smiling
A portrait of Rebekah in front of the NASA meatball.
NASA/David Friedlander

What hobbies fill your time outside of work?

I like to paint and draw. I also enjoy looking after animals. I also love participating in outreach events. When I lived in Philly I helped to set up the Astronomy on Tap branch there. I think it is important to talk about what we do and why it is needed.

What advice do you have for others who are interested in working in astronomy?

There is no one path. Don’t think you have to complete x, y, z steps and then you make it. That is not true. Do what you are passionate about, what you enjoy to learn about. And most importantly ask questions! Learn about what others are doing in the field, how they got there, and figure out what works for you.

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A graphic with a collection of people's portraits grouped together in front of a soft blue galaxy background. The people come from various races, ethnicities, and genders. A soft yellow star shines in the upper left corner, and the stylized text "Conversations with Goddard" is in white on the far right.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Jul 16, 2024
Contact
Location
Goddard Space Flight Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This mosaic from ESA’s Euclid space telescope contains 260 observations in visible and infrared light. It covers 132 square degrees, or more than 500 times the area of the full Moon, and is 208 gigapixels. This is 1% of the wide survey that Euclid will capture during its six-year mission.ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO This section of the Euclid mosaic is zoomed in 36 times, revealing the core of galaxy cluster Abell 3381, 470 million light-years from Earth. The image, made using both visible and infrared light, shows galaxies of different shapes and sizes, including elliptical, spiral, and dwarf galaxies.ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO This image shows an area of the Euclid mosaic zoomed in 150 times. The combination of visible and infrared light reveals galaxies that are interacting with each other in cluster Abell 3381, 470 million light-years away from Earth. ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO The location and actual size of the newly released Euclid mosaic is highlighted in yellow on a map of the entire sky captured by ESA’s Planck mission and a star map from ESA’s Gaia mission. ESA/Euclid/Euclid Consortium/NASA; ESA/Gaia/DPAC; ESA and the Planck Collaboration. CC BY-SA 3.0 IGO With contributions from NASA, the mission will map a third of the sky in order to study a cosmic mystery called dark energy.
      ESA (the European Space Agency) has released a new, 208-gigapixel mosaic of images taken by Euclid, a mission with NASA contributions that launched in 2023 to study why the universe is expanding at an accelerating rate. Astronomers use the term “dark energy” in reference to the unknown cause of this accelerated expansion.
      The new images were released at the International Astronautical Congress in Milan on Oct. 15.
      The mosaic contains 260 observations in visible and infrared light made between March 25 and April 8 of this year. In just two weeks, Euclid covered 132 square degrees of the southern sky — more than 500 times the area of the sky covered by a full Moon.
      The mosaic accounts for 1% of the wide survey Euclid will conduct over six years. During this survey, the telescope observes the shapes, distances, and motions of billions of galaxies out to a distance of more than 10 billion light-years. By doing this, it will create the largest 3D cosmic map ever made.
      https://www.youtube.com/watch?v=86ZCsUfgLRQ Dive into a snippet of the great cosmic atlas being produced by the ESA Euclid mission. This video zooms in on a 208-gigapixel mosaic containing about 14 million galaxies and covering a portion of the southern sky more than 500 times the area of the full Moon as seen from Earth. Credit: ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi; ESA/Gaia/DPAC; ESA/Planck Collaboration This first piece of the map already contains around 100 million stars and galaxies. Some 14 million of these galaxies could be used by Euclid to study the hidden influence of dark energy on the universe.
      “We have already seen beautiful, high-resolution images of individual objects and groups of objects from Euclid. This new image finally gives us a taste of the enormity of the area of sky Euclid will cover, which will enable us to take detailed measurements of billions of galaxies,” said Jason Rhodes, an observational cosmologist at NASA’s Jet Propulsion Laboratory in Southern California who is the U.S. science lead for Euclid and principal investigator for NASA’s Euclid dark energy science team.
      Galaxies Galore
      Even though this patch of space shows only 1% of Euclid’s total survey area, the spacecraft’s sensitive cameras captured an incredible number of objects in great detail. Enlarging the image by a factor of 600 reveals the intricate structure of a spiral galaxy in galaxy cluster Abell 3381, 470 million light-years away.
      This section of the Euclid mosaic is zoomed in 600 times. A single spiral galaxy is visible in great detail within cluster Abell 3381, 470 million light-years away from us. Data from both the visible and infrared light instruments on Euclid are included. ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO “What really strikes me about these new images is the tremendous range in physical scale,” said JPL’s Mike Seiffert, project scientist for the NASA contribution to Euclid. “The images capture detail from clusters of stars near an individual galaxy to some of the largest structures in the universe. We are beginning to see the first hints of what the full Euclid data will look like when it reaches the completion of the prime survey.”
      Visble as well are clouds of gas and dust located between the stars in our own galaxy. Sometimes called “galactic cirrus” because they look like cirrus clouds at Earth, these clouds can be observed by Euclid’s visible-light camera because they reflect visible light from the Milky Way.
      The mosaic released today is taste of what’s to come from Euclid. The mission plans to release 53 square degrees of the Euclid survey, including a preview of the Euclid Deep Field areas, in March 2025 and to release its first year of cosmology data in 2026.
      NASA’s forthcoming Nancy Grace Roman mission will also study dark energy — in ways that are complementary to Euclid. Mission planners will use Euclid’s findings to inform Roman’s dark energy work. Scheduled to launch by May 2027, Roman will study a smaller section of sky than Euclid but will provide higher-resolution images of millions of galaxies and peer deeper into the universe’s past, providing complementary information. In addition, Roman will survey nearby galaxies, find and investigate planets throughout our galaxy, study objects on the outskirts of our solar system, and more.
      More About Euclid
      Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium — consisting of more than 2,000 scientists from 300 institutes in 15 European countries, the United States, Canada, and Japan — is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.
      Three NASA-supported science teams contribute to the Euclid mission. In addition to designing and fabricating the sensor-chip electronics for Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument, JPL led the procurement and delivery of the NISP detectors as well. Those detectors, along with the sensor chip electronics, were tested at NASA’s Detector Characterization Lab at Goddard Space Flight Center in Greenbelt, Maryland. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech in Pasadena, California, will archive the science data and support U.S.-based science investigations. JPL is a division of Caltech.
      For more information about Euclid go to:
      https://www.nasa.gov/mission_pages/euclid/main/index.html
      For more information about Roman, go to:
      https://roman.gsfc.nasa.gov
      News Media Contacts
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      ESA Media Relations
      media@esa.int
      2024-141
      Share
      Details
      Last Updated Oct 15, 2024 Related Terms
      Euclid Astrophysics Dark Energy Dark Matter Galaxies Jet Propulsion Laboratory The Universe Explore More
      8 min read Revealing the Hidden Universe with Full-shell X-ray Optics at NASA MSFC
      The study of X-ray emission from astronomical objects reveals secrets about the Universe at the…
      Article 2 hours ago 5 min read Journey to a Water World: NASA’s Europa Clipper Is Ready to Launch
      Article 2 days ago 6 min read Can Life Exist on an Icy Moon? NASA’s Europa Clipper Aims to Find Out
      Article 3 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      On 15 October 2024, ESA’s Euclid space mission reveals the first piece of its great map of the Universe, showing millions of stars and galaxies.
      View the full article
    • By NASA
      To shape NASA’s path of exploration forward, Dr. Gioia Rau unravels stars and worlds beyond our solar system.
      Name: Dr. Gioia Rau
      Title: Astrophysicist
      Organization: Exoplanets and Stellar Astrophysics Laboratory, Astrophysics Division, Science Mission Directorate (Code 667)
      Dr. Gioia Rau is an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md.Photo courtesy of Gioia Rau What do you do and what is most interesting about your role here at Goddard?
      I’m an astrophysicist who studies both evolved stars, stars that about to die, and exoplanets, planets outside our solar system. I study the stars that once held the elements that are in our body, such as calcium. I also lead the science part of several mission concept studies. And I am really passionate about strategic thinking.
      How does it feel to achieve your childhood dream of becoming an astrophysicist at NASA?
      I am from Italy. Growing up, I was always fascinated by NASA. As a child, I watched the shuttle launches. I loved everything about stars, planets, and galaxies. I devoured astronomy books. I always knew that I wanted to study astrophysics.
      Around 10 years old, I wrote a letter to NASA saying that I wanted to become an astrophysicist to study the universe. NASA sent me information and encouraged me to study and work hard. So I did.
      I still remember my first day working at NASA. I looked around with so much joy at my dream coming true. Every day that I work at Goddard, I find more passion to continue pursue my dreams.
      What is your educational background?
      In 2009, I earned a Bachelor of Science in physics from the University of Rome, La Sapienza. In 2011, I obtained a master’s in physics and astrophysics there. Also in 2011, I was awarded a very competitive fellowship to do a master’s thesis at the California Institute of Technology and NASA’s Jet Propulsion Lab thanks to my high GPA. In 2016, I earned a Ph.D. in astrophysics from the University of Vienna. I came to Goddard in 2017 when I obtained a NASA post-doctoral fellowship.
      Why do you study evolved stars? 
      Evolved stars are the future of our own Sun, which in about 5 billion years will die. Evolved stars also produce elements found in our own bodies, as, for example, the calcium in our bones, the iron in our blood, and the gold in our rings. The stardust that I study is spread by the stellar winds into the interstellar medium to form new generation of stars and planets, and contribute to the cosmic recycle of matter in the universe.
      As Carl Sagan said, “We are all made of stardust.”
      What is most interesting about studying exoplanets?
      If we discover an exoplanet within the habitable zone of its star, we increase the likelihood of finding a planet with Earth-like conditions. This can enhance our understanding of planetary formation processes, and help determine if these exoplanets may harbor life through studying their atmospheres.
      My team of students and scientists used Artificial Intelligence techniques to discover new exoplanet candidates. They are called candidates because they need to be confirmed through follow-up observations. It was a very exciting, pioneering project using cutting-edge techniques.
      Why is working on mission concepts important to you?
      Mission concepts represent the future of space exploration, and I lead the science team of multiple mission concepts. By working on these pioneering projects, we as teams are actively shaping the future of NASA, and advancing the field of astrophysics. I am grateful for the opportunity to collaborate with so many brilliant scientists and engineers. I am passionate about strategic thinking and the visionary process behind it to shape the future of science and of organizations alike. I thrive on seeing the big picture and contributing to initiative that shape the future of organizations and people alike.
      Why do you love mentoring?
      I love working with students. It is gratifying to teach them and fuel their passions and also, again, working with the next generation helps shape NASA’s future. I tell the students what I firmly believe: that resilience, grit, passion, and hard work are some of the most important qualities in a scientist. That integrity, humility, and flexibility are great values to honor as a scientist. And I tell them not to be afraid of trying something new. After all, failure is part of being a scientist. Doing science is about learning from failures, to be successful. As scientists, we follow the scientific method to test our hypotheses through experiments. Ninety-nine percent of the time that experiment does not work the first time. So we need to keep refining the experiment until it does work. I also tell my students to keep in focus their goal, and work very hard toward it: make a plan and stick to it.
      What is your message when you do outreach?
      I started doing outreach when I was in college. I have since done hundreds of outreach events; I am passionate about sharing the joy of astrophysics, and my passion for it, with the general public! When I do outreach, my goal is to make the Universe accessible to the public: the Cosmos belongs to all of us, and we can all enjoy the beauty and wanders of the Universe, together.  I aim to build connections that bridge the gap between science and the public, working together to deepen our understanding of the Universe and inspire the next generation of scientists. I also remind the audience that behind every success there are a multitude of failures that led to that success. I tell them why I am passionate about science and how I became an astrophysicist at NASA. Engaging with people makes science more accessible and relatable. Outreach inspires the next generation to become scientists.
      Who is your science hero?
      Hypatia. She was an astronomer and a philosopher who lived in ancient Greece. At that time, scientists were also philosophers, and I love philosophy. She was martyred because her views were considered to be against the established way of thinking. She was a martyr for freedom of thought.
      Do you have a phrase that you live by?
      Keep on dreaming, and work hard toward your goals; ad astra per aspera!
      Who do you wish to thank?
      My father and my mother, and my current family: my husband who is my biggest supporter and fan, and my kids for the joy they bring. I also would like to thank all my mentors along the way. They always believed in me and guided me on my path.
      What do you do for fun?
      I love playing volleyball, skiing, reading, taking photos, playing the piano and the guitar, hiking, sailing, baking, and of course being with my family.
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      Unraveling mysteries, shaping futures, inspiring paths.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Oct 01, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Goddard Space Flight Center People of NASA Explore More
      8 min read Julie Rivera Pérez Bridges Business, STEM to ‘Make the Magic Happen’
      Article 1 week ago 5 min read Rob Gutro: Clear Science in the Forecast
      Article 2 weeks ago 8 min read Rob Garner: Editing Goddard’s Story to Fit the Space
      Article 2 weeks ago View the full article
    • By European Space Agency
      Video: 00:03:12 There’s a mystery out there in deep space – and solving it will make Earth safer. That’s why the European Space Agency’s Hera mission is taking shape – to go where one particular spacecraft has gone before.
      On 26 September 2022, moving at 6.1 km/s, NASA’s DART spacecraft crashed into the Dimorphos asteroid. Part of our Solar System changed. The impact shrunk the orbit of the Great Pyramid-sized Dimorphos around its parent asteroid, the mountain-sized Didymos.
      This grand experiment was performed to prove we could defend Earth against an incoming asteroid, by striking it with a spacecraft to deflect it. DART succeeded. But that still leaves many things scientists don’t know: What is the precise mass and makeup of Dimorphos? What did the impact do to the asteroid? How big is the crater left by DART’s collision? Or has Dimorphos completely cracked apart, to be held together only by its own weak gravity?
      That’s why we’re going back – with ESA’s Hera mission. The spacecraft will revisit Dimorphos to gather vital close-up data about the deflected body, to turn DART’s grand-scale experiment into a well-understood and potentially repeatable planetary defence technique.
      The mission will also perform the most detailed exploration yet of a binary asteroid system – although binaries make up 15% of all known asteroids, one has never been surveyed in detail.
      Hera will also perform technology demonstration experiments, including the deployment ESA’s first deep space ‘CubeSats’ – shoebox-sized spacecraft to venture closer than the main mission then eventually land – and an ambitious test of 'self-driving' for the main spacecraft, based on vision-based navigation.
      By the end of Hera’s observations, Dimorphos will become the best studied asteroid in history – which is vital, because if a body of this size ever struck Earth it could destroy a whole city. The dinosaurs had no defence against asteroids, because they never had a space agency. But – through Hera – we are teaching ourselves what we can do to reduce this hazard and make space safer.
      View the full article
    • By USH
      The Colares UFO incidents refer to a series of unusual sightings and encounters that took place in 1977 on the Brazilian island of Colares. During this period, numerous residents from the Amazon River community of Colares reported being attacked by UFOs. 

      These mysterious objects allegedly descended from the sky, and in some cases, emerged from the water, emitting intense beams of light. The beams caused physical harm, including burn marks, puncture wounds, fatigue, and memory loss, affecting as many as 2,000 people. 
      In response to the alarming situation, the Brazilian Air Force initiated a thorough investigation. Years later, their findings were made public, revealing details of this bizarre chapter in UFO history. 
      Weaponized hosts Jeremy and George speak with Thiago Ticchetti, Brazil's leading UFO investigator and author, to discuss the Colares case and the once-classified military files. 
      According to Thiago, the Brazilian military captured remarkably clear film footage and photographs of the UFOs. However, he claims that this evidence was sent to the U.S. and has never been released to the public. 
      In this episode, they also explores various conspiracy theories and recent debunking efforts surrounding the topic of unidentified aerial phenomena (UAP). 
      The discussion on the Colares UFO incidents begins at the 37-minute mark in the video.
        View the full article
  • Check out these Videos

×
×
  • Create New...