Jump to content

55 Years Ago: Apollo 11’s One Small Step, One Giant Leap


NASA

Recommended Posts

  • Publishers

“Houston, Tranquility Base here, the Eagle has landed.” “That’s one small step for [a] man, one giant leap for mankind.” “Magnificent desolation.” Three phrases that recall humanity’s first landing on and exploration of the lunar surface. In July 1969, Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin completed humanity’s first landing on the Moon. They fulfilled President John F. Kennedy’s national goal, set in May 1961, to land a man on the Moon and return him safely to the Earth before the end of the decade. Scientists began examining the first Moon rocks two days after the Apollo 11 splashdown while the astronauts began a three-week postflight quarantine.

Apollo 11 astronaut Neil A. Armstrong arrive for work at NASA’s Kennedy Space Center in Florida four days before launch Apollo 11 astronauts Michael Collins arrive for work at NASA’s Kennedy Space Center in Florida four days before launch Apollo 11 astronauts Edwin E. “Buzz” Aldrin arrive for work at NASA’s Kennedy Space Center in Florida four days before launch
Just another day at the office. Apollo 11 astronauts Neil A. Armstrong, left, Michael Collins, and Edwin E. “Buzz” Aldrin arrive for work at NASA’s Kennedy Space Center in Florida four days before launch.

Buzz, Mike, and Neil study their flight plans one more time Neil and Buzz in the Lunar Module simulator Mike gets in some flying a few days before launch
Left: Buzz, Mike, and Neil study their flight plans one more time. Middle: Neil and Buzz in the Lunar Module simulator. Right: Mike gets in some flying a few days before launch.

Buzz, Neil, and Mike look very relaxed as they talk to reporters in a virtual press conference on July 14
Buzz, Neil, and Mike look very relaxed as they talk to reporters in a virtual press conference on July 14.

The Apollo 11 crew The Apollo 11 patch The crew conquer the Moon, a TIME LIFE photograph
Left: The crew. Middle: The patch. Right: The crew conquer the Moon, a TIME LIFE photograph.

Breakfast, the most important meal if you’re going to the Moon Proper attire for lunar travel Apollo 11 crew. Wave good-bye to all your friends and supporters before you head for the launch pad
Left: Breakfast, the most important meal if you’re going to the Moon. Middle: Proper attire for lunar travel. Right: Wave good-bye to all your friends and supporters before you head for the launch pad.

Engineers in the Launch Control Center at NASA’s Kennedy Space Center in Florida monitor the countdown Once the rocket clears the launch tower, they turn control over to another team and they can watch it ascend into the sky Engineers in the Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, take over control of the flight once the tower is clear
Left: Engineers in the Launch Control Center at NASA’s Kennedy Space Center in Florida monitor the countdown. Middle: Once the rocket clears the launch tower, they turn control over to another team and they can watch it ascend into the sky. Right: Engineers in the Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, take over control of the flight once the tower is clear.

Lady Bird, LBJ, and VP Agnew in the VIP stands A million more camped out along the beaches to see the historic launch
Left: Lady Bird, LBJ, and VP Agnew in the VIP stands. Right: A million more camped out along the beaches to see the historic launch.

July 16, 1969. And we’re off!! Liftoff from Launch Pad 39A
July 16, 1969. And we’re off!! Liftoff from Launch Pad 39A.

The American flag is pictured in the foreground as the Saturn V rocket for the historic Apollo 11 mission soars through the sky First stage separation for Apollo 11 orbit 1 low pressure system
Left: The American flag is pictured in the foreground as the Saturn V rocket for the historic Apollo 11 mission soars through the sky. Middle: First stage separation for Apollo 11. Right: Made it to orbit!

Hey, don’t forget your LM! Buzz in the LM As the world turns smaller
Left: Hey, don’t forget your LM! Middle: Buzz in the LM: “S’allright?” “S’allright!” Right: As the world turns smaller.

crater king lunar earthrise columbia after undocking eagle after undocking
Left: Hello Moon! Middle left: Hello Earth! Middle right: See you soon, Columbia! Right: See you soon, Eagle! Happy landing!

view from lm after landing Neil takes THE first step First image taken from the lunar surface
July 20, 1969. Left: Magnificent desolation, from Buzz’s window after landing. Middle: Neil takes THE first step. Right: First image taken from the lunar surface.

Neil grabs a contingency sample, just in case Buzz joins the party Neil and Buzz read the plaque Buzz sets up the solar wind experiment
Left: Neil grabs a contingency sample, just in case. Middle left: Buzz joins the party. Middle right: Neil and Buzz read the plaque. Right: Buzz sets up the solar wind experiment.

Buzz and Neil set up the flag Neil takes that famous photo of Buzz saluting flag Often misidentified as Neil’s first footprint, it’s actually Buzz’s to test the lunar soil
Left: Buzz and Neil set up the flag. Middle left: Neil takes that famous photo of Buzz. Middle right: You know, this famous photo! Right: Often misidentified as Neil’s first footprint, it’s actually Buzz’s to test the lunar soil.

Buzz had the camera for a while and snapped one of the few photos of Neil on the surface Buzz, the seismometer, and the LM The LM and the laser retroreflector One of two photos from the surface that show both Buzz, the main subject, and Neil, the reflection
Left: Buzz had the camera for a while and snapped one of the few photos of Neil on the surface. Middle left: Buzz, the seismometer, and the LM. Middle right: The LM and the laser retroreflector. Right: One of two photos from the surface that show both Buzz, the main subject, and Neil, the reflection.

Neil took a stroll to Little West Crater and took several photos, spliced together into this pano
Neil took a stroll to Little West Crater and took several photos, spliced together into this pano.

Neil after the spacewalk, tired but satisfied aldrin post eva The flag from Buzz’s window before they went to sleep The same view, and the flag moved! Not aliens, it settled in the loose lunar regolith overnight
Left: Neil after the spacewalk, tired but satisfied. Middle left: Ditto for Buzz. Middle right: The flag from Buzz’s window before they went to sleep. Right: The same view, and the flag moved! Not aliens, it settled in the loose lunar regolith overnight.

Liftoff, the Eagle has wings again! Eagle approaches Columbia, and incidentally everyone alive at the time is in this picture, except for Mike who took it Moon departure earth approach
July 21, 1969. Left: Liftoff, the Eagle has wings again! Middle left: Eagle approaches Columbia, and incidentally everyone alive at the time is in this picture, except for Mike who took it. Middle right: On the way home, the Moon gets smaller. Right: And the Earth gets bigger.

Splashdown, as captured from a recovery helicopter Upside down in Stable 2, before balloons inflated to right the spacecraft Wearing his Biological Isolation Garment (BIG), Clancy Hatleberg, the decontamination officer, sets up his decontamination canisters. He’s already handed the astronauts their BIGs, who are donning them inside the spacecraft
July 24, 1969. Left: Splashdown, as captured from a recovery helicopter. Middle: Upside down in Stable 2, before balloons inflated to right the spacecraft. Right: Wearing his Biological Isolation Garment (BIG), Clancy Hatleberg, the decontamination officer, sets up his decontamination canisters. He’s already handed the astronauts their BIGs, who are donning them inside the spacecraft.

Hatleberg, left, with Neil, Buzz, and Mike in the decontamination raft Taken by U.S. Navy UDT swimmer Mike Mallory in a nearby raft, Hatleberg prepares to capture the Billy Pugh net for Neil, while Buss and Mike wave to Mallory taken from the recovery helicopter, the Billy Pugh net visible at the bottom of the photo
Left: Hatleberg, left, with Neil, Buzz, and Mike in the decontamination raft. Middle: Taken by U.S. Navy UDT swimmer Mike Mallory in a nearby raft, Hatleberg prepares to capture the Billy Pugh net for Neil, while Buss and Mike wave to Mallory. Right: The same scene, taken from the recovery helicopter, the Billy Pugh net visible at the bottom of the photo.

Once aboard the U.S.S. Hornet, Mike, Neil, and Buzz wearing their BIGs walk the 10 steps from the Recovery One helicopter to the Mobile Quarantine Facility (MQF), with NASA flight surgeon Dr. William Carpentier, in orange suit, following behind NASA engineer John Hirasaki filmed the astronauts as they entered the MQF Changed from their BIGs into flight suits, Mike, Neil, and Buzz chat with President Nixon through the MQF’s window Neil, playing the ukelele, Buzz, and Mike inside the MQF
Left: Once aboard the U.S.S. Hornet, Mike, Neil, and Buzz wearing their BIGs walk the 10 steps from the Recovery One helicopter to the Mobile Quarantine Facility (MQF), with NASA flight surgeon Dr. William Carpentier, in orange suit, following behind. Middle left: NASA engineer John Hirasaki filmed the astronauts as they entered the MQF. Middle right: Changed from their BIGs into flight suits, Mike, Neil, and Buzz chat with President Nixon through the MQF’s window. Right: Neil, playing the ukelele, Buzz, and Mike inside the MQF.

NASA technician receives the first box of Moon rocks from the MQF’s transfer lock Within a few hours of splashdown, the first box of Moon rocks departs Hornet bound for Johnston Island, where workers transferred it to a cargo plane bound for Houston Workers at Houston’s Ellington Air Force Base unload the first box of Moon rocks about eight hours later Senior NASA managers hold the first box of Moon rocks
Follow the Moon rocks from the Hornet to Ellington AFB. Left: NASA technician receives the first box of Moon rocks from the MQF’s transfer lock. Middle Left: Within a few hours of splashdown, the first box of Moon rocks departs Hornet bound for Johnston Island, where workers transferred it to a cargo plane bound for Houston. Middle right: Workers at Houston’s Ellington Air Force Base unload the first box of Moon rocks about eight hours later. Right: Senior NASA managers hold the first box of Moon rocks.

NASA officials Howard Schneider and Gary McCollum carry the first box of Moon rocks from the cargo plane to a waiting car for transport to the LRL at MSC In the LRL, technicians at MSC unpack the first box of Moon rocks Technicians weigh the box of Moon rocks The first box of Moon rocks inside a glovebox
July 25, 1969. Follow the Moon rocks from Ellington to the glovebox in the Lunar Receiving Laboratory (LRL). Left: NASA officials Howard Schneider and Gary McCollum carry the first box of Moon rocks from the cargo plane to a waiting car for transport to the LRL at MSC. Middle right: In the LRL, technicians at MSC unpack the first box of Moon rocks. Middle right: Technicians weigh the box of Moon rocks. Right: The first box of Moon rocks inside a glovebox.

The first box of Moon rocks has been unwrapped The box has been opened, revealing the first lunar samples The first rock to be documented, less than 48 hours after splashdown
July 26, 1969. Follow the Moon rocks in the LRL glovebox. Left: The first box of Moon rocks has been unwrapped. Middle: The box has been opened, revealing the first lunar samples. Right: The first rock to be documented, less than 48 hours after splashdown.

Two days after splashdown, the U.S.S. Hornet docks at Pearl Harbor in Honolulu Workers lift the MQF, with Neil, Mike, and Buzz inside, onto the pier A large welcome celebration for the Apollo 11 astronauts The MQF seen through a lei
July 26, 1969. Follow the astronauts from Hornet to Honolulu. Left: Two days after splashdown, the U.S.S. Hornet docks at Pearl Harbor in Honolulu. Middle left: Workers lift the MQF, with Neil, Mike, and Buzz inside, onto the pier. Middle right: A large welcome celebration for the Apollo 11 astronauts. Right: The MQF seen through a lei.

Workers truck the MQF from Pearl Harbor to nearby Hickam AFB Workers load the MQF onto a cargo plane at Hickam for the flight to Houston During the eight-hour flight, NASA recovery team members pose with Neil, Mike, and Buzz, seen through the window of the MQF Workers unload the MQF at Houston’s Ellington AFB
Follow the astronauts from Pearl Harbor to Ellington AFB. Left: Workers truck the MQF from Pearl Harbor to nearby Hickam AFB. Middle left: Workers load the MQF onto a cargo plane at Hickam for the flight to Houston. Middle right: During the eight-hour flight, NASA recovery team members pose with Neil, Mike, and Buzz, seen through the window of the MQF. Right: Workers unload the MQF at Houston’s Ellington AFB.

At Ellington, Neil, Mike, and Buzz reunite with their wives Jan, Pat, and TBS The MQF docks at the LRL Neil, Mike, and Buzz address the workers inside the LRL It’s back to work for Neil, Mike, and Buzz as they hold their debriefs in a glass-walled conference room in the LRL
July 27, 1969. Follow the astronauts from Ellington to working in the LRL. Left: At Ellington, Neil, Mike, and Buzz reunite with their wives Jan, Pat, and TBS. Middle left: The MQF docks at the LRL. Middle right: Neil, Mike, and Buzz address the workers inside the LRL. Right: It’s back to work for Neil, Mike, and Buzz as they hold their debriefs in a glass-walled conference room in the LRL.

Sailors hoist the Command Module Columbia onto the deck of the U.S.S. Hornet The flexible tunnel connects the CM to the MQF, allowing for retrieval of the Moon rocks and other item U.S. Marines guard Columbia aboard the Hornet Columbia brought on deck as Hornet docks in Pearl Harbor NASA engineers safe Columbia on Ford Island in Honolulu
Follow the spacecraft from splashdown to Hawaii. Left: Sailors hoist the Command Module Columbia onto the deck of the U.S.S. Hornet. Middle left: The flexible tunnel connects the CM to the MQF, allowing for retrieval of the Moon rocks and other items. Center: U.S. Marines guard Columbia aboard the Hornet. Middle right: Columbia brought on deck as Hornet docks in Pearl Harbor. Right: NASA engineers safe Columbia on Ford Island in Honolulu.

Airmen load Columbia onto a cargo plane at Hickam AFB for the flight to Houston Columbia arrives outside the LRL, where the MQF is still docked Hirasaki opens the hatch to Columbia in the LRL
July 31, 1969. Follow the spacecraft from Hawaii to the LRL. Left: Airmen load Columbia onto a cargo plane at Hickam AFB for the flight to Houston. Middle: Columbia arrives outside the LRL, where the MQF is still docked. Right: Hirasaki opens the hatch to Columbia in the LRL.

To be continued …

News from around the world in July 1969:

July 1 – Investiture of Prince Charles, age 21, as The Prince of Wales.

July 3 – 78,000 attend the Newport Jazz Festival in Newport, Rhode Island.

July 4 – John Lennon and the Plastic Ono Band release the single “Give Peace a Chance.”

July 11 – David Bowie releases the single “Space Oddity.”

July 11 – The Rolling Stones release “Honky Tonk Woman.”

July 14 – “Easy Rider,” starring Dennis Hopper, Peter Fonda, and Jack Nicholson, premieres.

July 18 – NASA Administrator Thomas O. Paine approves the “dry” workshop concept for the Apollo Applications Program, later renamed Skylab.

July 26 – Sharon Sites Adams becomes the first woman to solo sail the Pacific Ocean.

July 31 – Mariner 6 makes close fly-by of Mars, returning photos and data.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Over the past two years, the first U.S. space service component has tripled in size, established a 24/7 space watch cell and executed three Tier 1 Combatant Command exercises.

      View the full article
    • By NASA
      The future of human space exploration took a bold step forward at NASA’s Johnson Space Center in Houston on Nov. 15, 2024, as Texas A&M University leaders’ broke ground for the Texas A&M University Space Institute.

      Texas state officials, NASA leaders, and distinguished guests participated in the ceremony, held near the future development site of Johnson’s new Exploration Park, marking an important milestone in a transformative partnership to advance research, innovation, and human spaceflight.
      NASA’s Johnson Space Center Director Vanessa Wyche gives remarks at the Texas A&M University Space Institute groundbreaking ceremony in Houston on Nov. 15, 2024. NASA/Robert Markowitz “This groundbreaking is not just a physical act of breaking ground or planting a flag,” said Johnson Director Vanessa Wyche. “This is the moment our vision—to dare to expand frontiers and unite with our partners to explore for the benefit of all humanity—will be manifested.”

      The Texas A&M University Space Institute will be the first tenant at NASA’s 240-acre Exploration Park to support facilities that enhance commercial access, foster a collaborative development environment, and strengthen the United States’ competitiveness in the space and aerospace industries.
      Chairman Bill Mahomes Jr. of the Texas A&M University System Board of Regents, left, Chancellor John Sharp of the Texas A&M University System, and Johnson Director Vanessa Wyche hold a commemorative plaque celebrating the establishment of the Texas A&M University Space Institute at Exploration Park. NASA/Robert Markowitz Exploration Park aims to foster research, technology transfer, and a sustainable pipeline of career development for the Artemis Generation and Texas workers transitioning to the space economy. The park represents a key achievement of Johnson’s 2024 Dare | Unite | Explore commitments, emphasizing its role as the hub of human spaceflight, developing strategic partnerships, and paving the way for a thriving space economy.

      Research conducted at the Space Institute is expected to accelerate human spaceflight by providing opportunities for the brightest minds worldwide to address the challenges of living in low Earth orbit, on the Moon, and on Mars.
      Senior leadership from Johnson Space Center gathers for the groundbreaking ceremony of the Texas A&M University Space Institute. NASA/Robert Markowitz Industry leaders and Johnson executives stood alongside NASA’s Lunar Terrain Vehicle and Space Exploration Vehicle, symbolizing their commitment to fostering innovation and collaboration.

      Texas A&M University Space Institute director and retired NASA astronaut Dr. Nancy Currie-Gregg and Dr. Rob Ambrose, Space Institute associate director, served as the masters of ceremony for the event. Johnson leaders present included Deputy Director Stephen Koerner; Associate Director Donna Shafer; Associate Director for Vision and Strategy Douglas Terrier; Director of External Relations Office Arturo Sanchez; and Chief Technologist and Director of the Business Development and Technology Integration Office Nick Skytland.

      Also in attendance were Texas State Rep. Greg Bonnen; Texas A&M University System Board of Regents Chairman William Mahomes Jr.; Texas A&M University System Chancellor John Sharp; Texas A&M University President and Retired Air Force Gen. Mark Welsh III; and Texas A&M Engineering Vice Chancellor and Dean Robert Bishop.
      Texas A&M University Space Institute Director and retired NASA astronaut Nancy Currie-Gregg plants a Texas A&M University Space Institute flag at Johnson Space Center, symbolizing the partnership between the institute and NASA.NASA/Robert Markowitz The institute, expected to open in September 2026, will feature the world’s largest indoor simulation spaces for lunar and Martian surface operations, high-bay laboratories, and multifunctional project rooms.

      “The future of Texas’ legacy in aerospace is brighter than ever as the Texas A&M Space Institute in Exploration Park will create an unparalleled aerospace, economic, business development, research, and innovation region across the state,” Wyche said. “Humanity’s next giant leap starts here!”
      View the full article
    • By NASA
      NASA NASA astronaut Alan Bean steps off the lunar module ladder in this photo from Nov. 19, 1969, joining astronaut Charles Conrad Jr. on the Moon in the area called the Ocean of Storms. The two would then complete two spacewalks on the lunar surface, deploying science instruments, collecting geology samples, and inspecting the Surveyor 3 spacecraft, which had landed in the same area. While Bean and Conrad worked on the Moon, astronaut Richard F. Gordon completed science from lunar orbit.
      Learn more about Apollo 12’s pinpoint landing on the Moon.
      Image credit: NASA
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)
      NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on Nov. 14, 2024 — sol 4363, or Martian day 4,363 of the Mars Science Laboratory mission – at 02:55:34 UTC. NASA/JPL-Caltech Earth planning date: Friday, Nov. 15, 2024
      The Monday plan and drive had executed successfully, so the team had high hopes for APXS and MAHLI data on several enticing targets in the rover’s workspace. Alas, it was not to be: The challenging terrain had resulted in an awkwardly perched wheel at the end of the drive, so we couldn’t risk deploying the arm from this position. Maybe next drive!
      We did plan a busy weekend of non-arm science activities regardless. Due to a “soliday” the weekend has two sols instead of three, but we had enough power available to fit in more than three hours of observations. The two LIBS observations in the plan will measure the composition of the flat, reddish material in the workspace that is fractured in a polygonal pattern (“Bloody Canyon”) and a nearby rock coating in which the composition is suspected to change with depth (“Burnt Camp Creek”). One idea is that the reddish material could be the early stage version of the thicker dark coatings we’ve been seeing.
      A large Mastcam mosaic (“Yosemite”) was planned to capture the very interesting view to the rover’s north. Nearby and below the rover is the layer of rocks in which the “Mineral King” site was drilled on the opposite side of the channel back in March. This is a stratum of sulfate-bearing rock that appears dark-toned from orbit and we’re interested to know how consistent its features are from one side of the channel to the other. Higher up, the Yosemite mosaic also captures some deformation features that may reveal past water activity, and some terrain associated with the Gediz Vallis ridge. So there’s a lot of science packed into one mosaic!
      Two long-distance RMI mosaics were planned; one is to image back into the channel, where there may be evidence of a late-stage debris flow at the base of the ridge. The second looks “forward” from the rover’s perspective instead, into the wind-shaped yardang unit above us that will hopefully be explored close-up in the rover’s future. This yardang mosaic is intended to form one part of a stereo observation.
      The modern environment on Mars will also be observed with dust devil surveys on both sols, line-of-sight and tau observations to measure atmospheric opacity (often increased by dust in the atmosphere), and zenith and suprahorizon movies with Navcam to look for clouds. There will also be standard passive observations of the rover’s environment by REMS and DAN.
      We’ll continue driving westward and upward, rounding the Texoli butte to keep climbing through the sulfate-bearing unit. It’s not always easy driving but there’s a lot more science to do!
      Written by Lucy Lim, Participating Scientist at NASA’s Goddard Space Flight Center
      Share








      Details
      Last Updated Nov 18, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4362-4363: Plates and Polygons


      Article


      6 days ago
      3 min read Peculiar Pale Pebbles
      During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…


      Article


      6 days ago
      2 min read Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      On Nov. 16, 2009, space shuttle Atlantis began its 31st trip into space, on the third Utilization and Logistics Flight (ULF3) mission to the International Space Station, the 31st shuttle flight to the orbiting lab. During the 11-day mission, the six-member STS-129 crew worked with the six-person Expedition 21 crew during seven days of docked operations. The mission’s primary objectives included delivering two external logistics carriers and their spare parts, adding nearly 15 tons of hardware to the station, and returning a long-duration crew member, the last to return on a shuttle. Three of the STS-129 astronauts conducted three spacewalks to transfer spare parts and continue assembly and maintenance of the station. As a group of 12, the joint crews celebrated the largest and most diverse Thanksgiving gathering in space.

      Left: Official photograph of the STS-129 crew of Leland D. Melvin, left, Charles O. Hobaugh, Michael J. Foreman, Robert “Bobby” L. Satcher, Barry “Butch” E. Wilmore, and Randolph “Randy” J. Bresnik. Middle: The STS-129 crew patch. Right: The ULF3 payload patch.
      The six-person STS-129 crew consisted of Commander Charles O. Hobaugh, Pilot Barry “Butch” E. Wilmore, and Mission Specialists Randolph “Randy” J. Bresnik, Michael J. Foreman, Leland D. Melvin, and Robert “Bobby” L. Satcher. Primary objectives of the mission included launch and transfer to the station of the first two EXPRESS Logistics Carriers (ELC-1 and ELC-2) and their multiple spare parts, and the return of NASA astronaut and Expedition 20 and 21 Flight Engineer Nicole P. Stott, the last astronaut to rotate on the shuttle.

      Left: In the Orbiter Processing Facility (OPF) at NASA’s Kennedy Space Center in Florida, workers finish processing Atlantis for STS-129. Right: Space shuttle Atlantis rolls over from the OPF to the Vehicle Assembly Building.

      Left: Atlantis rolls out to Launch Pad 39A. Right: The STS-129 crew during the Terminal Countdown Demonstration Test.
      Atlantis returned to NASA’s Kennedy Space Center (KSC) from its previous mission, STS-125, on June 2, 2009, and workers towed it to the Orbiter Processing Facility (OPF) to prepare it for STS-129. The orbiter rolled over to the Vehicle Assembly Building on Oct. 6, and after mating with its external tank and twin solid rocket boosters, rolled out to Launch Pad 39A on Oct. 14, targeting a Nov. 16 launch. Six days later, the six-member crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal of the actual countdown for launch, returning to Houston for final training. They returned to KSC on Nov. 13 to prepare for launch.

      Left: With Atlantis sitting on Launch Pad 39A, the Ares 1-X rocket lifts off from Launch Pad 39B. Right: The payload canister arrives at Launch Pad 39A.

      Left: The STS-129 astronauts leave crew quarters for the ride to Launch Pad 39A. Right: Liftoff of space shuttle Atlantis on STS-129.
      On Nov. 16, at 2:28 p.m. EST, space shuttle Atlantis lifted off from Launch Pad 39A to begin its 31st trip into space, carrying its six-member crew on the ULF3 space station outfitting and resupply mission. Eight and a half minutes later, Atlantis and its crew had reached orbit. The flight marked Hobaugh’s third time in space, having flown on STS-104 and STS-118, Foreman’s and Melvin’s second, having flown on STS-123 and STS-122, respectively, while Wilmore, Bresnik, and Satcher enjoyed their first taste of weightlessness.

      Left: The two EXPRESS Logistics Carriers in Atlantis’ payload bay. Middle: Leland D. Melvin participates in the inspection of Atlantis’ thermal protection system. Right: The Shuttle Remote Manipulator System grasps the Orbiter Boom Sensor System for the inspection.
      After reaching orbit, the crew opened the payload bay doors, deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts spent six hours on their second day in space conducting a detailed inspection of Atlantis’ nose cap and wing leading edges, with Hobaugh, Wilmore, Melvin, and Bresnik taking turns operating the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the Orbiter Boom Sensor System (OBSS).

      Left: The International Space Station as seen from Atlantis during the rendezvous and docking maneuver. Middle: Atlantis as seen from the space station, showing the two EXPRESS Logistics Carriers (ELC) in the payload bay. Right: View of the space station from Atlantis during the rendezvous pitch maneuver, with the Shuttle Remote Manipulator System grasping ELC-1 in preparation for transfer shortly after docking.
      On the mission’s third day, Hobaugh assisted by his crewmates brought Atlantis in for a docking with the space station. During the rendezvous, Hobaugh stopped the approach at 600 feet and completed the Rendezvous Pitch Maneuver so astronauts aboard the station could photograph Atlantis’ underside to look for any damage to the tiles. Shortly after docking, the crews opened the hatches between the two spacecraft and the six-person station crew welcomed the six-member shuttle crew. After the welcoming ceremony, Stott joined the STS-129 crew, leaving a crew of five aboard the station. Melvin and Bresnik used the SRMS to pick up ELC-1 from the payload bay and hand it off to Wilmore and Expedition 21 NASA astronaut Jeffrey N. Williams operating the Space Station Remote Manipulator System (SSRMS), who then installed it on the P3 truss segment.

      Images from the first spacewalk. Left: Michael J. Foreman unstows the S-band Antenna Support Assembly prior to transferring it to the station. Middle: Robert “Bobby” L. Satcher lubricates the robotic arm’s Latching End Effector. Right: Satcher’s image reflected in a Z1 radiator panel.
      During the mission’s first of three spacewalks on flight day four, Foreman and Satcher ventured outside for six hours and 37 minutes. During the excursion, with robotic help from their fellow crew members, they transferred a spare S-band Antenna Support Assembly from the shuttle’s payload bay to the station’s Z1 truss. Satcher, an orthopedic surgeon by training, performed “surgery” on the station’s main robotic arm as well as the robotic arm on the Kibo Japanese module, by lubricating their latching end effectors. One day after joining Atlantis’ crew, Stott celebrated her 47th birthday.

      Left: Space station crew member Jeffery N. Williams assists STS-129 astronaut Leland D. Melvin in operating the space station’s robotic arm to transfer and install the second EXPRESS Logistics Carrier (ELC2) on the S3 truss. Middle: The station robotic arm installs ELC2 on the S3 truss. Right: Michael J. Foreman, left, and Randolph J. Bresnik during the mission’s second spacewalk.
      On the mission’s fifth day, the astronauts performed another focused inspection of the shuttle’s thermal protection system. The next day, through another coordinated robotic activity involving the shuttle and station arms, the astronauts transferred ELC-2 and its complement of spares from the payload bay to the station’s S3 truss. Foreman and Bresnik completed the mission’s second spacewalk. Working on the Columbus module, they installed the Grappling Adaptor to On-Orbit Railing (GATOR) fixture that includes a system used for ship identification and an antenna for Ham radio operators. They next installed a wireless video transmission system on the station’s truss. This spacewalk lasted six hours and eight minutes.

      Left: Randolph J. Bresnik during the third STS-129 spacewalk. Middle: Robert “Bobby” L. Satcher during the third spacewalk. Right: The MISSE 7 exposure experiment suitcases installed on ELC2.
      Following a crew off duty day, on flight day eight Satcher and Bresnik exited the airlock for the mission’s third and final spacewalk. Their first task involved moving an oxygen tank from the newly installed ELC-2 to the Quest airlock. They accomplished this task with robotic assistance from their fellow crew members. Bresnik retrieved the two-suitcase sized MISSE-7 experiment containers from the shuttle cargo bay and installed them on the MISSE-7 platform on ELC-2, opening them to begin their exposure time. This third spacewalk lasted five hours 42 minutes.

      Left: An early Thanksgiving meal for 12 aboard the space station. Right: After the meal, who has the dishes?
      Thanksgiving Day fell on the day after undocking, so the joint crews celebrated with a meal a few days early. The meal represented not only the largest Thanksgiving celebration in space with 12 participants, but also the most international, with four nations represented – the United States, Russia, Canada, and Belgium (representing the European Space Agency).

      Left: The 12 members of Expedition 21 and STS-129 pose for a final photograph before saying their farewells. Right: The STS-129 crew, now comprising seven members.

      A selection of STS-129 Earth observation images. Left: Maui. Middle: Los Angeles. Right: Houston.
      Despite their busy workload, as with all space crews, the STS-129 astronauts made time to look out the windows and took hundreds of photographs of their home planet.

      Left: The space station seen from Atlantis during the flyaround. Middle: Atlantis as seen from the space station during the flyaround, with a now empty payload bay. Right: Astronaut Nicole P. Stott looks back at the station, her home for three months, from the departing Atlantis.
      On flight day nine, the joint crews held a brief farewell ceremony. European Space Agency astronaut Frank De Winne, the first European to command the space station, handed over command to NASA astronaut Williams. The two crews parted company and closed the hatches between the two spacecraft. The next day, with Wilmore at the controls, Atlantis undocked from the space station, having spent seven days as a single spacecraft. Wilmore completed a flyaround of the station, with the astronauts photographing it to document its condition. A final separation burn sent Atlantis on its way.
      The astronauts used the shuttle’s arm to pick up the OBSS and perform a late inspection of Atlantis’ thermal protection system. On flight day 11, Hobaugh and Wilmore tested the orbiter’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing. The entire crew busied themselves with stowing all unneeded equipment.

      Left: Atlantis about to touch down at NASA’s Kennedy Space Center in Florida. Middle: Atlantis touches down. Right: Atlantis deploys its drag chute as it continues down the runway.

      Left: Six of the STS-129 astronauts pose with Atlantis on the runway at NASA’s Kennedy Space Center in Florida. Right: The welcome home ceremony for the STS-129 crew at Ellington Field in Houston.
      On Nov. 27, the astronauts closed Atlantis’ payload bay doors, donned their launch and entry suits, and strapped themselves into their seats, a special recumbent one for Stott who had spent the last three months in weightlessness. Hobaugh fired Atlantis’ two Orbital Maneuvering System engines to bring them out of orbit and head for a landing half an orbit later. He guided Atlantis to a smooth touchdown at KSC’s Shuttle Landing Facility.
      The landing capped off a very successful STS-129 mission of 10 days, 19 hours, 16 minutes. The six astronauts orbited the planet 171 times. Stott spent 90 days, 10 hours, 45 minutes in space, completing 1,423 orbits of the Earth. After towing Atlantis to the OPF, engineers began preparing it for its next flight, STS-132 in May 2010. The astronauts returned to Houston for a welcoming ceremony at Ellington Field.
      Enjoy the crew narrate a video about the STS-129 mission.
      Explore More
      23 min read 55 Years Ago: Apollo 12 Makes a Pinpoint Landing on the Moon
      Article 4 days ago 12 min read 40 Years Ago: STS-51A – “The Ace Repo Company”
      Article 1 week ago 1 min read Oral History with Jon A. McBride, 1943 – 2024
      Article 2 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...