Jump to content

Recommended Posts

  • Publishers
Posted

“Houston, Tranquility Base here, the Eagle has landed.” “That’s one small step for [a] man, one giant leap for mankind.” “Magnificent desolation.” Three phrases that recall humanity’s first landing on and exploration of the lunar surface. In July 1969, Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin completed humanity’s first landing on the Moon. They fulfilled President John F. Kennedy’s national goal, set in May 1961, to land a man on the Moon and return him safely to the Earth before the end of the decade. Scientists began examining the first Moon rocks two days after the Apollo 11 splashdown while the astronauts began a three-week postflight quarantine.

Apollo 11 astronaut Neil A. Armstrong arrive for work at NASA’s Kennedy Space Center in Florida four days before launch Apollo 11 astronauts Michael Collins arrive for work at NASA’s Kennedy Space Center in Florida four days before launch Apollo 11 astronauts Edwin E. “Buzz” Aldrin arrive for work at NASA’s Kennedy Space Center in Florida four days before launch
Just another day at the office. Apollo 11 astronauts Neil A. Armstrong, left, Michael Collins, and Edwin E. “Buzz” Aldrin arrive for work at NASA’s Kennedy Space Center in Florida four days before launch.

Buzz, Mike, and Neil study their flight plans one more time Neil and Buzz in the Lunar Module simulator Mike gets in some flying a few days before launch
Left: Buzz, Mike, and Neil study their flight plans one more time. Middle: Neil and Buzz in the Lunar Module simulator. Right: Mike gets in some flying a few days before launch.

Buzz, Neil, and Mike look very relaxed as they talk to reporters in a virtual press conference on July 14
Buzz, Neil, and Mike look very relaxed as they talk to reporters in a virtual press conference on July 14.

The Apollo 11 crew The Apollo 11 patch The crew conquer the Moon, a TIME LIFE photograph
Left: The crew. Middle: The patch. Right: The crew conquer the Moon, a TIME LIFE photograph.

Breakfast, the most important meal if you’re going to the Moon Proper attire for lunar travel Apollo 11 crew. Wave good-bye to all your friends and supporters before you head for the launch pad
Left: Breakfast, the most important meal if you’re going to the Moon. Middle: Proper attire for lunar travel. Right: Wave good-bye to all your friends and supporters before you head for the launch pad.

Engineers in the Launch Control Center at NASA’s Kennedy Space Center in Florida monitor the countdown Once the rocket clears the launch tower, they turn control over to another team and they can watch it ascend into the sky Engineers in the Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, take over control of the flight once the tower is clear
Left: Engineers in the Launch Control Center at NASA’s Kennedy Space Center in Florida monitor the countdown. Middle: Once the rocket clears the launch tower, they turn control over to another team and they can watch it ascend into the sky. Right: Engineers in the Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, take over control of the flight once the tower is clear.

Lady Bird, LBJ, and VP Agnew in the VIP stands A million more camped out along the beaches to see the historic launch
Left: Lady Bird, LBJ, and VP Agnew in the VIP stands. Right: A million more camped out along the beaches to see the historic launch.

July 16, 1969. And we’re off!! Liftoff from Launch Pad 39A
July 16, 1969. And we’re off!! Liftoff from Launch Pad 39A.

The American flag is pictured in the foreground as the Saturn V rocket for the historic Apollo 11 mission soars through the sky First stage separation for Apollo 11 orbit 1 low pressure system
Left: The American flag is pictured in the foreground as the Saturn V rocket for the historic Apollo 11 mission soars through the sky. Middle: First stage separation for Apollo 11. Right: Made it to orbit!

Hey, don’t forget your LM! Buzz in the LM As the world turns smaller
Left: Hey, don’t forget your LM! Middle: Buzz in the LM: “S’allright?” “S’allright!” Right: As the world turns smaller.

crater king lunar earthrise columbia after undocking eagle after undocking
Left: Hello Moon! Middle left: Hello Earth! Middle right: See you soon, Columbia! Right: See you soon, Eagle! Happy landing!

view from lm after landing Neil takes THE first step First image taken from the lunar surface
July 20, 1969. Left: Magnificent desolation, from Buzz’s window after landing. Middle: Neil takes THE first step. Right: First image taken from the lunar surface.

Neil grabs a contingency sample, just in case Buzz joins the party Neil and Buzz read the plaque Buzz sets up the solar wind experiment
Left: Neil grabs a contingency sample, just in case. Middle left: Buzz joins the party. Middle right: Neil and Buzz read the plaque. Right: Buzz sets up the solar wind experiment.

Buzz and Neil set up the flag Neil takes that famous photo of Buzz saluting flag Often misidentified as Neil’s first footprint, it’s actually Buzz’s to test the lunar soil
Left: Buzz and Neil set up the flag. Middle left: Neil takes that famous photo of Buzz. Middle right: You know, this famous photo! Right: Often misidentified as Neil’s first footprint, it’s actually Buzz’s to test the lunar soil.

Buzz had the camera for a while and snapped one of the few photos of Neil on the surface Buzz, the seismometer, and the LM The LM and the laser retroreflector One of two photos from the surface that show both Buzz, the main subject, and Neil, the reflection
Left: Buzz had the camera for a while and snapped one of the few photos of Neil on the surface. Middle left: Buzz, the seismometer, and the LM. Middle right: The LM and the laser retroreflector. Right: One of two photos from the surface that show both Buzz, the main subject, and Neil, the reflection.

Neil took a stroll to Little West Crater and took several photos, spliced together into this pano
Neil took a stroll to Little West Crater and took several photos, spliced together into this pano.

Neil after the spacewalk, tired but satisfied aldrin post eva The flag from Buzz’s window before they went to sleep The same view, and the flag moved! Not aliens, it settled in the loose lunar regolith overnight
Left: Neil after the spacewalk, tired but satisfied. Middle left: Ditto for Buzz. Middle right: The flag from Buzz’s window before they went to sleep. Right: The same view, and the flag moved! Not aliens, it settled in the loose lunar regolith overnight.

Liftoff, the Eagle has wings again! Eagle approaches Columbia, and incidentally everyone alive at the time is in this picture, except for Mike who took it Moon departure earth approach
July 21, 1969. Left: Liftoff, the Eagle has wings again! Middle left: Eagle approaches Columbia, and incidentally everyone alive at the time is in this picture, except for Mike who took it. Middle right: On the way home, the Moon gets smaller. Right: And the Earth gets bigger.

Splashdown, as captured from a recovery helicopter Upside down in Stable 2, before balloons inflated to right the spacecraft Wearing his Biological Isolation Garment (BIG), Clancy Hatleberg, the decontamination officer, sets up his decontamination canisters. He’s already handed the astronauts their BIGs, who are donning them inside the spacecraft
July 24, 1969. Left: Splashdown, as captured from a recovery helicopter. Middle: Upside down in Stable 2, before balloons inflated to right the spacecraft. Right: Wearing his Biological Isolation Garment (BIG), Clancy Hatleberg, the decontamination officer, sets up his decontamination canisters. He’s already handed the astronauts their BIGs, who are donning them inside the spacecraft.

Hatleberg, left, with Neil, Buzz, and Mike in the decontamination raft Taken by U.S. Navy UDT swimmer Mike Mallory in a nearby raft, Hatleberg prepares to capture the Billy Pugh net for Neil, while Buss and Mike wave to Mallory taken from the recovery helicopter, the Billy Pugh net visible at the bottom of the photo
Left: Hatleberg, left, with Neil, Buzz, and Mike in the decontamination raft. Middle: Taken by U.S. Navy UDT swimmer Mike Mallory in a nearby raft, Hatleberg prepares to capture the Billy Pugh net for Neil, while Buss and Mike wave to Mallory. Right: The same scene, taken from the recovery helicopter, the Billy Pugh net visible at the bottom of the photo.

Once aboard the U.S.S. Hornet, Mike, Neil, and Buzz wearing their BIGs walk the 10 steps from the Recovery One helicopter to the Mobile Quarantine Facility (MQF), with NASA flight surgeon Dr. William Carpentier, in orange suit, following behind NASA engineer John Hirasaki filmed the astronauts as they entered the MQF Changed from their BIGs into flight suits, Mike, Neil, and Buzz chat with President Nixon through the MQF’s window Neil, playing the ukelele, Buzz, and Mike inside the MQF
Left: Once aboard the U.S.S. Hornet, Mike, Neil, and Buzz wearing their BIGs walk the 10 steps from the Recovery One helicopter to the Mobile Quarantine Facility (MQF), with NASA flight surgeon Dr. William Carpentier, in orange suit, following behind. Middle left: NASA engineer John Hirasaki filmed the astronauts as they entered the MQF. Middle right: Changed from their BIGs into flight suits, Mike, Neil, and Buzz chat with President Nixon through the MQF’s window. Right: Neil, playing the ukelele, Buzz, and Mike inside the MQF.

NASA technician receives the first box of Moon rocks from the MQF’s transfer lock Within a few hours of splashdown, the first box of Moon rocks departs Hornet bound for Johnston Island, where workers transferred it to a cargo plane bound for Houston Workers at Houston’s Ellington Air Force Base unload the first box of Moon rocks about eight hours later Senior NASA managers hold the first box of Moon rocks
Follow the Moon rocks from the Hornet to Ellington AFB. Left: NASA technician receives the first box of Moon rocks from the MQF’s transfer lock. Middle Left: Within a few hours of splashdown, the first box of Moon rocks departs Hornet bound for Johnston Island, where workers transferred it to a cargo plane bound for Houston. Middle right: Workers at Houston’s Ellington Air Force Base unload the first box of Moon rocks about eight hours later. Right: Senior NASA managers hold the first box of Moon rocks.

NASA officials Howard Schneider and Gary McCollum carry the first box of Moon rocks from the cargo plane to a waiting car for transport to the LRL at MSC In the LRL, technicians at MSC unpack the first box of Moon rocks Technicians weigh the box of Moon rocks The first box of Moon rocks inside a glovebox
July 25, 1969. Follow the Moon rocks from Ellington to the glovebox in the Lunar Receiving Laboratory (LRL). Left: NASA officials Howard Schneider and Gary McCollum carry the first box of Moon rocks from the cargo plane to a waiting car for transport to the LRL at MSC. Middle right: In the LRL, technicians at MSC unpack the first box of Moon rocks. Middle right: Technicians weigh the box of Moon rocks. Right: The first box of Moon rocks inside a glovebox.

The first box of Moon rocks has been unwrapped The box has been opened, revealing the first lunar samples The first rock to be documented, less than 48 hours after splashdown
July 26, 1969. Follow the Moon rocks in the LRL glovebox. Left: The first box of Moon rocks has been unwrapped. Middle: The box has been opened, revealing the first lunar samples. Right: The first rock to be documented, less than 48 hours after splashdown.

Two days after splashdown, the U.S.S. Hornet docks at Pearl Harbor in Honolulu Workers lift the MQF, with Neil, Mike, and Buzz inside, onto the pier A large welcome celebration for the Apollo 11 astronauts The MQF seen through a lei
July 26, 1969. Follow the astronauts from Hornet to Honolulu. Left: Two days after splashdown, the U.S.S. Hornet docks at Pearl Harbor in Honolulu. Middle left: Workers lift the MQF, with Neil, Mike, and Buzz inside, onto the pier. Middle right: A large welcome celebration for the Apollo 11 astronauts. Right: The MQF seen through a lei.

Workers truck the MQF from Pearl Harbor to nearby Hickam AFB Workers load the MQF onto a cargo plane at Hickam for the flight to Houston During the eight-hour flight, NASA recovery team members pose with Neil, Mike, and Buzz, seen through the window of the MQF Workers unload the MQF at Houston’s Ellington AFB
Follow the astronauts from Pearl Harbor to Ellington AFB. Left: Workers truck the MQF from Pearl Harbor to nearby Hickam AFB. Middle left: Workers load the MQF onto a cargo plane at Hickam for the flight to Houston. Middle right: During the eight-hour flight, NASA recovery team members pose with Neil, Mike, and Buzz, seen through the window of the MQF. Right: Workers unload the MQF at Houston’s Ellington AFB.

At Ellington, Neil, Mike, and Buzz reunite with their wives Jan, Pat, and TBS The MQF docks at the LRL Neil, Mike, and Buzz address the workers inside the LRL It’s back to work for Neil, Mike, and Buzz as they hold their debriefs in a glass-walled conference room in the LRL
July 27, 1969. Follow the astronauts from Ellington to working in the LRL. Left: At Ellington, Neil, Mike, and Buzz reunite with their wives Jan, Pat, and TBS. Middle left: The MQF docks at the LRL. Middle right: Neil, Mike, and Buzz address the workers inside the LRL. Right: It’s back to work for Neil, Mike, and Buzz as they hold their debriefs in a glass-walled conference room in the LRL.

Sailors hoist the Command Module Columbia onto the deck of the U.S.S. Hornet The flexible tunnel connects the CM to the MQF, allowing for retrieval of the Moon rocks and other item U.S. Marines guard Columbia aboard the Hornet Columbia brought on deck as Hornet docks in Pearl Harbor NASA engineers safe Columbia on Ford Island in Honolulu
Follow the spacecraft from splashdown to Hawaii. Left: Sailors hoist the Command Module Columbia onto the deck of the U.S.S. Hornet. Middle left: The flexible tunnel connects the CM to the MQF, allowing for retrieval of the Moon rocks and other items. Center: U.S. Marines guard Columbia aboard the Hornet. Middle right: Columbia brought on deck as Hornet docks in Pearl Harbor. Right: NASA engineers safe Columbia on Ford Island in Honolulu.

Airmen load Columbia onto a cargo plane at Hickam AFB for the flight to Houston Columbia arrives outside the LRL, where the MQF is still docked Hirasaki opens the hatch to Columbia in the LRL
July 31, 1969. Follow the spacecraft from Hawaii to the LRL. Left: Airmen load Columbia onto a cargo plane at Hickam AFB for the flight to Houston. Middle: Columbia arrives outside the LRL, where the MQF is still docked. Right: Hirasaki opens the hatch to Columbia in the LRL.

To be continued …

News from around the world in July 1969:

July 1 – Investiture of Prince Charles, age 21, as The Prince of Wales.

July 3 – 78,000 attend the Newport Jazz Festival in Newport, Rhode Island.

July 4 – John Lennon and the Plastic Ono Band release the single “Give Peace a Chance.”

July 11 – David Bowie releases the single “Space Oddity.”

July 11 – The Rolling Stones release “Honky Tonk Woman.”

July 14 – “Easy Rider,” starring Dennis Hopper, Peter Fonda, and Jack Nicholson, premieres.

July 18 – NASA Administrator Thomas O. Paine approves the “dry” workshop concept for the Apollo Applications Program, later renamed Skylab.

July 26 – Sharon Sites Adams becomes the first woman to solo sail the Pacific Ocean.

July 31 – Mariner 6 makes close fly-by of Mars, returning photos and data.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      The NACA Ames laboratory in 1944 Credits: NASA Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.” 
      Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research: 
      My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere
      Joseph sweetman ames
      Founding member of the N.A.C.A.
      “My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
      That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
      Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
      Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
      Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
      “Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
      For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars. 
      “As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.” 
      When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”
      Ames Aeronautical Laboratory.NACAView the full article
    • By NASA
      NASA’s Dawn spacecraft captured this image of Vesta as it left the giant asteroid’s orbit in 2012. The framing camera was looking down at the north pole, which is in the middle of the image.NASA/JPL-Caltech/UCLA/MPS/DLR/IDA Known as flow formations, these channels could be etched on bodies that would seem inhospitable to liquid because they are exposed to the extreme vacuum conditions of space.
      Pocked with craters, the surfaces of many celestial bodies in our solar system provide clear evidence of a 4.6-billion-year battering by meteoroids and other space debris. But on some worlds, including the giant asteroid Vesta that NASA’s Dawn mission explored, the surfaces also contain deep channels, or gullies, whose origins are not fully understood.
      A prime hypothesis holds that they formed from dry debris flows driven by geophysical processes, such as meteoroid impacts, and changes in temperature due to Sun exposure. A recent NASA-funded study, however, provides some evidence that impacts on Vesta may have triggered a less-obvious geologic process: sudden and brief flows of water that carved gullies and deposited fans of sediment. By using lab equipment to mimic conditions on Vesta, the study, which appeared in Planetary Science Journal, detailed for the first time what the liquid could be made of and how long it would flow before freezing.
      Although the existence of frozen brine deposits on Vesta is unconfirmed, scientists have previously hypothesized that meteoroid impacts could have exposed and melted ice that lay under the surface of worlds like Vesta. In that scenario, flows resulting from this process could have etched gullies and other surface features that resemble those on Earth.
      To explore potential explanations for deep channels, or gullies, seen on Vesta, scientists used JPL’s Dirty Under-vacuum Simulation Testbed for Icy Environments, or DUSTIE, to simulate conditions on the giant asteroid that would occur after meteoroids strike the surface.NASA/JPL-Caltech But how could airless worlds — celestial bodies without atmospheres and exposed to the intense vacuum of space — host liquids on the surface long enough for them to flow? Such a process would run contrary to the understanding that liquids quickly destabilize in a vacuum, changing to a gas when the pressure drops.
      “Not only do impacts trigger a flow of liquid on the surface, the liquids are active long enough to create specific surface features,” said project leader and planetary scientist Jennifer Scully of NASA’s Jet Propulsion Laboratory in Southern California, where the experiments were conducted. “But for how long? Most liquids become unstable quickly on these airless bodies, where the vacuum of space is unyielding.”
      The critical component turns out to be sodium chloride — table salt. The experiments found that in conditions like those on Vesta, pure water froze almost instantly, while briny liquids stayed fluid for at least an hour. “That’s long enough to form the flow-associated features identified on Vesta, which were estimated to require up to a half-hour,” said lead author Michael J. Poston of the Southwest Research Institute in San Antonio.
      Launched in 2007, the Dawn spacecraft traveled to the main asteroid belt between Mars and Jupiter to orbit Vesta for 14 months and Ceres for almost four years. Before ending in 2018, the mission uncovered evidence that Ceres had been home to a subsurface reservoir of brine and may still be transferring brines from its interior to the surface. The recent research offers insights into processes on Ceres but focuses on Vesta, where ice and salts may produce briny liquid when heated by an impact, scientists said.
      Re-creating Vesta
      To re-create Vesta-like conditions that would occur after a meteoroid impact, the scientists relied on a test chamber at JPL called the Dirty Under-vacuum Simulation Testbed for Icy Environments, or DUSTIE. By rapidly reducing the air pressure surrounding samples of liquid, they mimicked the environment around fluid that comes to the surface. Exposed to vacuum conditions, pure water froze instantly. But salty fluids hung around longer, continuing to flow before freezing.
      The brines they experimented with were a little over an inch (a few centimeters) deep; scientists concluded the flows on Vesta that are yards to tens of yards deep would take even longer to refreeze.
      The researchers were also able to re-create the “lids” of frozen material thought to form on brines. Essentially a frozen top layer, the lids stabilize the liquid beneath them, protecting it from being exposed to the vacuum of space — or, in this case the vacuum of the DUSTIE chamber — and helping the liquid flow longer before freezing again.
      This phenomenon is similar to how on Earth lava flows farther in lava tubes than when exposed to cool surface temperatures. It also matches up with modeling research conducted around potential mud volcanoes on Mars and volcanoes that may have spewed icy material from volcanoes on Jupiter’s moon Europa.
      “Our results contribute to a growing body of work that uses lab experiments to understand how long liquids last on a variety of worlds,” Scully said.
      Find more information about NASA’s Dawn mission here:
      https://science.nasa.gov/mission/dawn/
      News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-178
      Share
      Details
      Last Updated Dec 20, 2024 Related Terms
      Dawn Asteroids Ceres Jet Propulsion Laboratory Vesta Explore More
      5 min read Avalanches, Icy Explosions, and Dunes: NASA Is Tracking New Year on Mars
      Article 1 hour ago 5 min read Cutting-Edge Satellite Tracks Lake Water Levels in Ohio River Basin
      Article 3 days ago 5 min read NASA Mars Orbiter Spots Retired InSight Lander to Study Dust Movement
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      “Trying to do stellar observations from Earth is like trying to do birdwatching from the bottom of a lake.” James B. Odom, Hubble Program Manager 1983-1990.

      The third servicing mission to the Hubble Space Telescope, placed in orbit in 1990, occurred during the STS-103 mission in December 1999. During the mission, originally planned for June 2000 but accelerated by six months following unexpected failures of the telescope’s attitude control gyroscopes, the astronauts restored the facility to full functionality. During their eight-day mission that featured the first space shuttle crew to spend Christmas in space, the seven-member U.S. and European crew rendezvoused with and captured Hubble, and four astronauts in rotating teams of two conducted three lengthy and complex spacewalks to service and upgrade the telescope. They redeployed the telescope with greater capabilities than ever before to continue its mission to help scientists unlock the secrets of the universe.
      Schematic showing the Hubble Space Telescope’s major components. Workers inspect the Hubble Space Telescope’s 94-inch diameter primary mirror prior to assembly. Astronauts release the Hubble Space Telescope in April 1990 during the STS-31 mission. The discovery after the Hubble Space Telescope’s launch in 1990 that its primary mirror suffered from a flaw called spherical aberration disappointed scientists who could not obtain the sharp images they had expected. But thanks to the Hubble’s built-in feature of on-orbit servicing, NASA devised a plan to correct the telescope’s optics during the first planned repair mission in 1993. A second servicing mission in 1997 upgraded the telescope’s capabilities until the next mission planned for three years later. But after three of the telescope’s six gyroscopes failed in 1997, 1998, and 1999, mission rules dictated a call up mission in case additional gyroscope failures sent Hubble into a safe mode. NASA elected to move up some of the servicing tasks from the third mission, splitting it into missions 3A and 3B, planning to fly 3A in October 1999 on Discovery’s STS-103 mission primarily to replace the failed gyroscopes. Delays to the shuttle fleet resulting from anomalies during the launch of STS-93 in July 1993 slipped STS-103 first into November and ultimately into December. Technical issues with Discovery itself pushed the launch date to mid-December, and raised concerns about having a shuttle in orbit during the Y2K transition. Once the launch had slipped to Dec. 19, mission planners cut the mission from 10 to eight days, deleting one of the four spacewalks, to ensure a return before the end of the calendar year. The servicing mission couldn’t come soon enough, as a fourth gyroscope failed aboard Hubble in mid-November, with Discovery already poised on the launch pad to prepare for STS-103. Controllers placed Hubble in a safe mode until the astronauts arrived.
      The STS-103 crew of C. Michael Foale, left, Claude Nicollier, Scott J. Kelly, Curtis L. Brown, Jean-François A. Clervoy, John M. Grunsfeld, and Steven L. Smith. The STS-103 crew patch. The mission patch for the Hubble Servicing Mission-3A. To execute the third Hubble Servicing Mission, in July 1998 NASA selected an experienced four-person team to carry out a record-breaking six spacewalks on the flight then planned for June 2000. The spacewalkers included Mission Specialists Steven L. Smith serving as payload commander, John M. Grunsfeld, C. Michael Foale, and European Space Agency (ESA) astronaut Claude Nicollier from Switzerland. The addition in March 1999 of Commander Curtis L. Brown, Pilot Scott J. Kelly, and Mission Specialist ESA astronaut Jean-François A. Clervoy of France rounded out the highly experienced crew with 18 previous spaceflights among them. Brown earned the distinction as only the fifth person to fly in space six times. For Kelly, STS-103 marked his first spaceflight. Smith, Clervoy, and Grunsfeld each had flown two previous missions, Foale four including a long-duration mission aboard Mir, and Nicollier three. Smith participated in three spacewalks during the second Hubble Servicing Mission and Nicollier served as the Remote Manipulator System (RMS) or robotic arm operator during the first.
      The STS-103 crew at the traditional prelaunch breakfast at NASA’s Kennedy Space Center in Florida. Suited up, the STS-103 astronauts leave crew quarters for the trip to Launch Pad 39B. Space shuttle Discovery on Launch Pad 39B, awaiting launch. Discovery arrived back to KSC at the end of the STS-96 mission on June 6, 1999, and workers towed it to the Orbiter Processing Facility the same day to begin readying it for STS-103. The vehicle rolled over to the Vehicle Assembly Building on Nov. 4, where workers mated it with its external tank and twin solid rocket boosters, before rolling the stack out to Launch Pad 39B on Nov. 13.
      Liftoff of space shuttle Discovery on the STS-103 Hubble Space Telescope servicing mission 3A. The Hubble Space Telescope as Discovery approaches. The STS-103 crew berthing the Hubble into the payload bay. Beginning its 27th trip into space, Discovery lifted off from Launch Pad 39B at 7:50 p.m. EST on Dec. 19 to fix the ailing space telescope. Two days later, Brown and Kelly maneuvered Discovery to within range of Hubble so Clervoy operating the 50-foot-long RMS could grapple the telescope and berth it into the payload bay.
      During the first spacewalk, astronauts John M. Grunsfeld, left, and Steven L. Smith replacing one of the Rate Sensor Units containing two gyroscopes. Smith gives a thumbs up with his image reflected in the Hubble Space Telescope. Smith and Grunsfeld conducted the mission’s first spacewalk on Dec. 22, the flight’s fourth day in space. The duo, aided by Clervoy operating the RMS from inside Discovery, completed two of mission’s highest priority objectives. They replaced the failed gyroscopes, installing three new Rate Sensor Units, each containing two gyroscopes, to return control to the ailing telescope. They also installed six Voltage/Temperature Improvement Kits to prevent the telescope’s batteries from overheating as they aged. The excursion lasted eight hours 15 minutes, at the time the second longest spacewalk.
      During the second spacewalk, astronauts C. Michael Foale, left, and Claude Nicollier during the changeout of the fine guidance sensor. Foale at the end of the Remote Manipulator System services the Hubble Space Telescope. The next day, Nicollier and Foale conducted the mission’s second spacewalk. The main task for this excursion involved installing a new computer aboard Hubble, replacing the original 1970s vintage unit. The new radiation-hardened system ran 20 times faster and carried six times more memory while using one-third the electrical power. They also installed a fine guidance sensor before concluding the eight-hour 10-minute spacewalk.
      Astronauts Steven L. Smith, left, and John M. Grunsfeld begin their servicing activities during the third spacewalk. At the end of the third and final spacewalk, Grunsfeld, left, and Smith provide closing comments about the work the mission accomplished to service the Hubble Space Telescope. Smith and Grunsfeld ventured outside for a second time to complete the flight’s third and final spacewalk on Dec. 24, the first spacewalk conducted on Christmas Eve day. First, they replaced an old reel-to-reel tape recorder with a solid state unit providing a 10-fold increase in recording capability and replaced a failed data transmitter. They installed seven new covers on Hubble’s electronics bay doors for added protection of the telescope’s insulation. This third spacewalk lasted eight hours eight minutes.
      The first space shuttle crew to celebrate Christmas in space, the STS-103 astronauts pose wearing Santa hats. The Hubble Space Telescope shortly after the STS-103 crew released it. The next day, the STS-103 astronauts earned the distinction as the first space shuttle crew to spend Christmas Day in space. Clervoy grappled Hubble, lifted it out of the payload bay and released it to continue its mission. Hubble Space Telescope Program Manager John H. Campbell said after the release, “The spacecraft is being guided by its new gyros under the control of its brand new computer. [It] is now orbiting freely and is in fantastic shape.” After deploying Hubble, the astronauts enjoyed a well-deserved Christmas dinner, with Clervoy providing French delicacies. The crew spent Dec. 26 readying Discovery for its return to Earth, including testing its reaction control system thrusters and aerodynamic surfaces and stowing unneeded gear.
      Astronauts Steven L. Smith, left, Claude Nicollier, and John M. Grunsfeld complete their fluid loading protocol and put on their launch and entry suits prior to reentry. Space shuttle Discovery makes a perfect night landing at NASA’s Kennedy Space Center in Florida. The crew welcome home ceremony at Ellington Field in Houston. On Dec. 27, the astronauts donned their launch and entry suits and prepared for the return to Earth. They closed the payload bay doors and fired Discovery’s engines to bring them out of orbit. Just before landing, Kelly lowered the craft’s landing gear and Brown guided Discovery to a smooth night landing at KSC, concluding a flight of seven days, 23 hours, 11 minutes. They circled the Earth 119 times. The flight marked Discovery’s last solo flight as all its subsequent missions docked with the International Space Station. Workers at KSC began readying it for its next mission, STS-92 in October 2000.

      The Hubble Space Telescope continues to operate today, far exceeding the five-year life extension expected from the last of the servicing missions in 2009. Joined in space by the James Webb Space Telescope in 2021, the two instruments together continue to image the skies across a broad range of the electromagnetic spectrum to provide scientists with the tools to gain unprecedented insights into the universe and its formation.

      Watch the STS-103 crew narrate a video of their Hubble servicing mission.
      View the full article
    • By European Space Agency
      Video: 00:10:27 In 1975, 10 European countries came together with a vision to collaborate on key space activities: science and astronomy, launch capabilities and space applications: the European Space Agency, ESA, was born.
      In 2025, we mark half a century of joint European achievement – filled with firsts and breakthroughs in science, exploration and technology, and the space infrastructure and economy that power Europe today.
       
      During the past five decades ESA has grown, developing ever bolder and bigger projects and adding more Member States, with Slovenia joining as the latest full Member State in January.
       
      We’ll also celebrate the 50th anniversary of ESA’s Estrack network, 30 years of satellite navigation in Europe and 20 years since ESA launched the first demonstration satellite Giove-A which laid the foundation for the EU’s own satnav constellation Galileo. Other notable celebrations are the 20th anniversary of ESA’s Business Incubation Centres, or BICs, and the 30th year in space for SOHO, the joint ESA and NASA Solar and Heliospheric Observatory.
       
      Sadly though, 2025 will mean end of science operations for Integral and Gaia. Integral, ESA's gamma-ray observatory has exotic objects in space since 2002 and Gaia concludes a decade of mapping the stars. But as some space telescopes retire, another one provides its first full data release. Launched in 2023, we expect Euclid’s data release early in the new year.
       
      Launch-wise, we’re looking forward to Copernicus Sentinel-4 and -5 (Sentinel-4 will fly on an MTG-sounder satellite and Sentinel-5 on the MetOp-SG-A1 satellite), Copernicus Sentinel-1D, Sentinel-6B and Biomass. We’ll also launch the SMILE mission, or Solar wind Magnetosphere Ionosphere Link Explorer, a joint mission with the Chinese academy of science.
       
      The most powerful version of Europe’s new heavy-lift rocket, Ariane 6, is set to fly operationally for the first time in 2025. With several European commercial launcher companies planning to conduct their first orbital launches in 2025 too, ESA is kicking off the European Launcher Challenge to support the further development of European space transportation industry.
       
      In human spaceflight, Polish ESA project astronaut Sławosz Uznański will fly to the ISS on the commercial Axiom-4 mission. Artemis II will be launched with the second European Service Module, on the first crewed mission around the Moon since 1972.
      The year that ESA looks back on a half century of European achievement will also be one of key decisions on our future. At the Ministerial Council towards the end of 2025, our Member States will convene to ensure that Europe's crucial needs, ambitions and the dreams that unite us in space become reality.
      So, in 2025, we’ll celebrate the legacy of those who came before but also help establish a foundation for the next 50 years. Join us as we look forward to a year that honours ESA’s legacy and promises new milestones in space.
      View the full article
    • By NASA
      NASA’s Glenn Research Center leaders stand with Evening With the Stars presenters. Left to right: Tim Smith, Nikki Welch, Center Director Dr. Jimmy Kenyon, Acting Deputy Director Dr. Wanda Peters, and Carlos Garcia-Galan. Credit: NASA/Jef Janis  NASA Glenn Research Center’s “An Evening With the Stars” showcased research and technology innovations that addressed this year’s theme, NASA Glenn’s Spotlight on the Stars: 10 Years and Counting. The event featured presentations from Glenn subject matter experts and a networking reception. 
      Held at Windows on the River near Cleveland’s historic waterfront on Nov. 20, the event attracted sponsors and guests from more than 50 companies, universities, and organizations eager to learn more about the center’s recent accomplishments.  
      Special guests Dennis Andersh, CEO and president of Parallax Advanced Research/Ohio Aerospace Institute; Terrence Slaybaugh, vice president of Sites and Infrastructure for JobsOhio; and Dr. Wanda Peters, NASA Glenn’s acting deputy  director, provided remarks. 
      Center Director Dr. Jimmy Kenyon took the stage to welcome visitors and share some accomplishments from an exciting year at NASA Glenn. Kenyon then introduced the presenters – NASA’s stars of the evening – and their topics. 
      “I relish this evening each year because it spotlights what is most important to our success at NASA: our people,” Kenyon said.  

      Nikki Welch is the digital manager in the Office of Communications. In this role, she helps to tell the NASA Glenn story in engaging ways for Glenn’s hundreds of thousands of followers on social media. Welch shared details about her efforts and the importance of “Connecting People to the Mission.”  
      NASA Glenn Research Center’s Nikki Welch talks about connecting people to the NASA mission through storytelling. Credit: NASA/Jef Janis  Tim Smith leads high-temperature alloy development at NASA Glenn and has led research that resulted in over a dozen research licenses and four commercial licenses. As one of the inventors of the metal alloy GRX-810, Smith shared information about Glenn’s “Super Alloy Achievements.” 
      NASA Glenn Research Center’s Tim Smith talks about NASA’s superalloy achievements. Credit: NASA/Jef Janis  Carlos Garcia-Galan is the manager of the Orion program’s European Service Module Integration Office. This module, being provided by ESA (European Space Agency), is Orion’s powerhouse. Garcia-Galan shared information on the topic “Dreaming of Going to the Moon.”  

      NASA Glenn Research Center’s Carlos Garcia-Galan talks about the spacecraft that will bring humanity back to the Moon. Credit: NASA/Jef Janis  Return to Newsletter Explore More
      1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award 
      Article 9 mins ago 1 min read NASA Glenn’s Office of Communications Earns Top Honors 
      Article 9 mins ago 10 min read 55 Years Ago: Apollo 13, Preparations for the Third Moon Landing
      Article 2 hours ago View the full article
  • Check out these Videos

×
×
  • Create New...