Jump to content

Tech Today: NASA’s Moonshot Launched Commercial Fuel Cell Industry 


NASA

Recommended Posts

  • Publishers

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A large fuel cell housed in a grey shipping container-like enclosure
HyAxiom’s 440-kilowatt phosphoric acid fuel cell is now its flagship product, and it still builds on technical know-how developed under the Apollo and space shuttle programs.
Credit: HyAxiom Inc.

NASA’s investment in fuel cells dates to the 1960s when most of the world was still reliant on fossil fuels. A fuel cell generates electricity and heat when hydrogen and oxygen bond through an electrolyte. Because its only by-product is water, it’s an environmentally friendly power source. 

The agency’s interest in fuel cells came when NASA needed to fuel missions to the Moon. Engineers at NASA’s Johnson Space Center in Houston looked to fuel cells because they could provide more energy per pound than batteries could over the course of a long mission. At that time, fuel cells were just a concept that had never been put to practical use. 

The Apollo spacecraft orbiting the Moon
NASA funded development of the first practical fuel cells because they were necessary to cut weight from the Apollo spacecraft for Moon missions. Three fuel cells in the Apollo service module provided electricity for the capsule containing the astronauts. The division of Pratt & Whitney that made the fuel cells later became UTC Power, now a subsidiary of Doosan Group known as HyAxiom Inc.
Credit: NASA

NASA funded three companies, including a portion of Pratt & Whitney, to develop prototypes. For Apollo mission fuel cells, NASA selected the Pratt & Whitney group, which soon became UTC Power, as the supplier of all the space shuttle fuel cells. With the agency funding and shaping its technology development, UTC Power eventually started offering commercial fuel cells. The company is now known as HyAxiom Inc. and operates from the same plant in South Windsor, Connecticut, that produced fuel cells for the agency. 

The company released its first commercial fuel cell in the mid-1990s and introduced its current product line about a decade later. 

“The models they built for these products we use today had a lot of the electrochemistry understanding from the space program,” said Sridhar Kanuri, HyAxiom’s chief technology officer. 

HyAxiom now produces around 120 units per year but expects to ramp up as government investments in fuel cells increase. The U.S. government plans to use fuel cells to store energy from renewable sources. 

Today’s commercial fuel cell companies received much of their knowledge base from NASA. John Scott, NASA’s principal technologist for power and energy storage said, “All these companies trace their intellectual property heritage, their corporate heritage, even the generations of personnel to those companies NASA funded back in the early 1960s.” 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has selected eight companies for a new award to help acquire Earth observation data and provide related services for the agency.
      The Commercial SmallSat Data Acquisition Program On-Ramp1 Multiple Award contract is a firm-fixed-price indefinite-delivery/indefinite-quantity multiple-award contract with a maximum value of $476 million, cumulatively amongst all the selected contractors, and a performance period through Nov. 15, 2028.
      The selectees are:
      BlackSky Geospatial Solutions, Inc. in Herndon, Virginia ICEYE US Inc. in Irvine, California MDA Geospatial Service Inc. in Richmond, British Columbia, Canada Pixxel Space Technologies, Inc in El Segundo, California Planet Labs Federal, Inc. in Arlington, Virginia Satellogic Federal, LLC in Davidson, North Carolina Teledyne Brown Engineering, Inc. in Huntsville, Alabama The Tomorrow Companies Inc. in Boston Under the contract, the recipients will be responsible for acquiring observation data from commercial sources that support NASA’s Earth science research and application activities that help improve life on the planet. The goal of the awards is to give NASA a cost-effective way to augment or complement the Earth observations acquired by the agency and other U.S. government and international agencies for the benefit of all.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Sep 06, 2024 LocationNASA Headquarters Related Terms
      SmallSats Program Earth Earth Observatory NASA Headquarters Planetary Science Division Science Mission Directorate View the full article
    • By NASA
      A pair of CubeSats from NASA’s Pathfinder Technology Demonstrator series launched on SpaceX’s Transporter-11 rideshare mission at 11:56 a.m. PDT Friday, August 16, from Vandenburg Space Force Base in California. Photo credit: SpaceX A pair of CubeSats from NASA’s Pathfinder Technology Demonstrator, or PTD, series lifted off on SpaceX’s Transporter-11 rideshare mission at 11:56 a.m. PDT Friday, August 16, from Vandenburg Space Force Base in California. The two small satellites, PTD-4 and PTD-R, will help advance NASA’s efforts to validate novel technologies and increase small spacecraft capabilities in order to shape the future of space exploration and technology.
      PTD-4 will demonstrate a high-power, low-volume deployable solar array with an integrated antenna, while PTD-R will focus on testing simultaneous ultraviolet and short-wave infrared optical sensing from space for the first time via two 85-mm aperture monolithic telescopes mounted side-by-side. The two CubeSats use a six-unit (6U) spacecraft, named Triumph, common to all PTD satellites.
      L2 Solutions DBA SEOPS LLC secured the launch of the two CubeSats for NASA as part of an award on the agency’s VADR (Venture-class Acquisition of Dedicated and Rideshare) contract. This is part of an effort to embrace more commercial practices to achieve lower launch costs, which provide new opportunities for these small but highly capable small satellites to find a ride to space. These highly flexible contracts help broaden access to space through lower launch costs and serve as an ideal platform for contributing to NASA’s science research and technology development.
      Learn more about the PTD missions at: https://www.nasa.gov/smallspacecraft/pathfinder-technology-demonstrator/
      View the full article
    • By NASA
      2 min read
      NASA Explores Industry, Partner Interest in Using VIPER Moon Rover
      NASA’s VIPER robotic Moon rover is seen here in a clean room at NASA’s Johnson Space Center in Houston. NASA/Helen Arase Vargas As part of its commitment to a robust, sustainable lunar exploration program for the benefit of all, NASA issued a Request for Information Friday to seek interest from American companies and institutions in conducting a mission using the agency’s VIPER Moon rover.
      VIPER, short for Volatiles Investigating Polar Exploration Rover, was designed to map the location and concentration of potential off-planet resources, like ice, on the South Pole of Earth’s Moon. NASA announced July 17 its intent to discontinue VIPER, and to pursue alternative methods to verify the presence of frozen water at the lunar South Pole, but could contribute the VIPER rover as-is to an interested partner.
      From July 17 to Aug. 1, NASA accepted expressions of interest from the broader community in using the existing VIPER rover system. The Request for Information now seeks to learn more about how interested parties would use VIPER at minimal to no cost to the government. This Request for Information is open to U.S. organizations and industry. NASA will explore interest from the international community through separate channels. 
      “NASA thanks everyone who provided expressions of interest in using VIPER and looks forward to learning more about how potential partners envision accomplishing NASA’s science and exploration goals with the rover,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “We want to make the best use possible of the engineering, technology, and expertise that have been developed by this project to advance scientific knowledge of the Moon. Partnership opportunities on VIPER would allow us to do this without impacting our future cadence of commercial deliveries to the Moon, to continue lunar science and exploration for everyone’s benefit.”
      Future CLPS (Commercial Lunar Payload Services) deliveries to the lunar surface and instruments on NASA’s crewed missions will progress the agency’s assessment of volatiles across the South Pole region.
      The Request for Information is available online and will remain open for responses until 11:59 p.m. EDT Monday, Sep. 2.
      For more information about VIPER, visit:
      https://www.nasa.gov/viper
      Media contacts
      Alise Fisher / Erin Morton
      Headquarters, Washington
      202-358-2546 / 202-805-9393
      alise.m.fisher@nasa.gov / erin.morton@nasa.gov
      Share








      Details
      Last Updated Aug 09, 2024 Related Terms
      Commercial Lunar Payload Services (CLPS) Earth’s Moon VIPER (Volatiles Investigating Polar Exploration Rover) Explore More
      4 min read NASA, JAXA Bounce Laser Beam Between Moon’s Surface and Lunar Orbit


      Article


      2 weeks ago
      3 min read New Evidence Adds to Findings Hinting at Network of Caves on Moon
      An international team of scientists using data from NASA’s LRO (Lunar Reconnaissance Orbiter) has discovered…


      Article


      3 weeks ago
      5 min read What’s Up: April 2024 Skywatching Tips from NASA
      Catch Mars and Saturn rising, and Jupiter hangs out with Comet 12P. Plus NASA has…


      Article


      4 months ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Akeem Shannon showcasing Flipstik attached to a smartphone. The product’s design was improved by looking at NASA research to inform its gecko-inspired method of adhering to surfacesCredit: Flipstik Inc. When it comes to innovative technologies, inventors often find inspiration in the most unexpected places. A former salesman, Akeem Shannon, was inspired by his uncle, who worked as an engineer at NASA’s Marshall Space Flight Center in Huntsville, Alabama, to research the agency’s published technologies. He came across a sticky NASA invention that would help him launch his breakout product.  

      In the early 2010s, a team of roboticists at NASA’s Jet Propulsion Laboratory in Southern California were exploring methods to enhance robots’ gripping capabilities. They came across the Van Der Waals force – a weak electrostatic bond that forms at the molecular level when points on two surfaces make contact. This is the same force that geckos use to climb along walls.  

      Much like a gecko’s foot, this apparatus developed at the Jet Propulsion Laboratory uses tiny fibers to grip objects and hold them tight. This work later inspired and informed the development of Flipstik.Credit: NASA The microscopic hairs on gecko toe pads are called setae, which gives the technology the nickname of “synthetic setae.” While Shannon couldn’t use this NASA technology to hang a TV on a wall, he saw a way to mount a much smaller screen – a cellphone. 

      A synthetic setae attachment on a cellphone case could stick to most surfaces, such as mirrors or the back of airplane seats. With a product design in hand, Shannon founded St. Louis-based Flipstik Inc. in 2018. Shannon wanted to make a reliable product that could be used multiple times in various situations. He said the published NASA research, which describes methods of molding and casting the tiny hairs to be more durable, was indispensable to making his product portable and reusable. 

      Flipstik has made an impact on the mobile device industry. In addition to people using it to mount their phones to watch videos, it has become popular among content creators to capture camera angles. Flipstik also allows deaf users to keep their hands free, enabling them to make video calls in sign language. From geckos to NASA research, Shannon’s innovation is a reminder that inspiration can come from anywhere. 

      Read More Share
      Details
      Last Updated Aug 06, 2024 Related Terms
      Technology Transfer & Spinoffs Jet Propulsion Laboratory Robotics Spinoffs Technology Transfer Explore More
      6 min read Quantum Scale Sensors used to Measure Planetary Scale Magnetic Fields
      Magnetic fields are everywhere in our solar system. They originate from the Sun, planets, and…
      Article 1 hour ago 4 min read AstroViz: Iconic Pillars of Creation Star in NASA’s New 3D Visualization
      NASA’s Universe of Learning – a partnership among the Space Telescope Science Institute (STScI), Caltech/IPAC,…
      Article 20 hours ago 7 min read NASA’s Perseverance Rover Scientists Find Intriguing Mars Rock
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Robotics
      Jet Propulsion Laboratory
      Technology Transfer & Spinoffs
      Technology
      View the full article
    • By NASA
      To enable deep space missions, the capability to transfer and store cryogenic fuels (typically liquid hydrogen, methane, and oxygen) without significant leakage over long duration missions is critical. NASA has been actively developing zero boil-off cryocooler technology to reduce storage losses. Another source of fuel loss is from leakage at the fuel disconnect used for in-space refueling. Current designs use fluoroelastomer seals which are excellent for applications such as natural gas but are susceptible to embrittlement at the lower temperatures required for liquid hydrogen. In addition, the high contact forces needed to reduce leakage can cause cracking of the seals. NASA is seeking potential low or zero leakage cryogenic disconnect seal designs that could be fabricated and tested.
      Award: $6,000 in total prizes
      Open Date: July 31, 2024
      Close Date: September 25, 2024
      For more information, visit: https://grabcad.com/challenges/low-leakage-cryogenic-disconnects-for-fuel-transfer-and-long-term-storage
      View the full article
  • Check out these Videos

×
×
  • Create New...