Jump to content

15 Years Ago: STS-127 Delivers Japanese External Platform to Space Station


NASA

Recommended Posts

  • Publishers

On July 15, 2009, space shuttle Endeavour began its 23rd trip into space, on the 2JA mission to the International Space Station, the 29th shuttle flight to the orbiting lab. During the 16-day mission, the seven-member STS-127 crew, working with Expedition 20, the first six-person crew aboard the station, completed the primary objectives of the mission. The flight marked the first time 13 people worked about the station at the same time. They added the Exposed Facility (EF) to the Kibo Japanese Experiment Module (JEM), including its first three payloads, and performed a crew exchange of long-duration crew members. The tasks involved five complex space walks and extensive robotic activities using three different manipulator systems during 11 days of docked operations.

The STS-127 crew patch Official photograph of the STS-127 crew of David A. Wolf, left, Christopher J. Cassidy, Douglas G. Hurley, Julie Payette of Canada, Mark L. Polansky, Thomas H. Marshburn, and Timothy L. Kopra The patch for the 2J/A mission
Left: The STS-127 crew patch. Middle: Official photograph of the STS-127 crew of David A. Wolf, left, Christopher J. Cassidy, Douglas G. Hurley, Julie Payette of Canada, Mark L. Polansky, Thomas H. Marshburn, and Timothy L. Kopra. Right: The patch for the 2J/A mission.

The seven-person STS-127 crew consisted of Commander Mark L. Polansky, Pilot Douglas G. Hurley, and Mission Specialists David A. Wolf, Christopher J. Cassidy, Julie Payette of the Canadian Space Agency (CSA), Thomas H. Marshburn, and Timothy L. Kopra. Primary objectives of the mission included the addition of the Exposed Facility (EF) to the Kibo Japanese Experiment Module (JEM) and the long-duration crew member exchange of Kopra for Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), who had been aboard the space station since March 2009 as a member of Expeditions 18, 19, and 20.

The STS-127 crew during their preflight press conference at NASA’s Johnson Space Center in Houston The STS-127 payloads in Endeavour’s cargo bay at Launch Pad 39A at NASA’s Kennedy Space Center in Florida Space shuttle Endeavour on Launch Pad 39A a few days before launch
Left: The STS-127 crew during their preflight press conference at NASA’s Johnson Space Center in Houston. Middle: The STS-127 payloads in Endeavour’s cargo bay at Launch Pad 39A at NASA’s Kennedy Space Center in Florida. Right: Space shuttle Endeavour on Launch Pad 39A a few days before launch.

Endeavour returned from its previous mission, STS-126, on Nov. 28, 2008. It arrived in the Orbiter Processing Facility at NASA’s Kennedy Space Center (KSC) on Dec. 13, moved to the Vehicle Assembly Building on April 10, 2009, and rolled out to Launch Pad 39B seven days later to serve as the Launch on Need vehicle for STS-125 in May 2009. When that mission flew without issues, on May 31, workers rolled Endeavour around to Pad 39A to begin preparations for STS-127, planned for launch on June 13. A gaseous hydrogen leak scrubbed this first launch attempt. A similar leak halted the second attempt on June 17 and managers reset the launch date to July 11. Managers scrubbed that launch when 11 lightning strikes struck the launch pad area, requiring a review of Endeavour’s and ground systems. With the seven-member crew aboard Endeavour, weather once again halted the launch attempt on July 12. They tried again the next day, but weather conditions led to a fifth scrubbed launch attempt. The charm came on the sixth try.

Liftoff of space shuttle Endeavour on STS-127 carrying the Exposed Facility for the Japanese Kibo module
Liftoff of space shuttle Endeavour on STS-127 carrying the Exposed Facility for the Japanese Kibo module.

On July 15, 2009, at 6:03 p.m. EDT, space shuttle Endeavour lifted off from KSC’s Launch Pad 39A to begin its 23rd trip into space, beginning the 2JA mission to the space station. Eight and a half minutes later, Endeavour and its crew had reached orbit. This marked Wolf’s fourth time in space, Polansky’s third, Payette’s second, while Hurley, Cassidy, Marshburn, and Kopra enjoyed their first taste of true weightlessness.

NASA astronauts Timothy L. Kopra, left, and Thomas H. Marshburn enjoy the first few minutes of weightlessness after Endeavour reached orbit On the mission’s second day, the Shuttle Remote Manipulator System (SRMS) uses the Orbiter Boom Sensor System to image Endeavour’s Thermal Protection System (TPS) Canadian Space Agency astronaut Julie Payette operates the SRMS during the TPS inspection
Left: NASA astronauts Timothy L. Kopra, left, and Thomas H. Marshburn enjoy the first few minutes of weightlessness after Endeavour reached orbit. Middle: On the mission’s second day, the Shuttle Remote Manipulator System (SRMS) uses the Orbiter Boom Sensor System to image Endeavour’s Thermal Protection System (TPS). Right: Canadian Space Agency astronaut Julie Payette operates the SRMS during the TPS inspection.

After reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts spent five hours on their second day in space conducting a detailed inspection of Endeavour’s nose cap and wing leading edges, with Payette operating the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the Orbiter Boom Sensor System (OBSS).

NASA astronaut Christopher J. Cassidy uses a laser range finder during Endeavour’s rendezvous with the space station Endeavour as seen from the space station during the rendezvous Close up of the Kibo Japanese Experiment Module – the astronauts attached the Exposed Facility at the left end of the module
Left: NASA astronaut Christopher J. Cassidy uses a laser range finder during Endeavour’s rendezvous with the space station. Middle: Endeavour as seen from the space station during the rendezvous. Right: Close up of the Kibo Japanese Experiment Module – the astronauts attached the Exposed Facility at the left end of the module.

On July 17, the 34th anniversary of the Apollo-Soyuz Test Project docking, Polansky assisted by his crewmates brought Endeavour in for a docking with the space station. During the rendezvous, Polansky stopped the approach at 600 feet and completed the Rendezvous Pitch Maneuver so astronauts aboard the station could photograph Endeavour’s underside to look for any damage to the tiles. Shortly after docking, the crews opened the hatches between the two spacecraft and the six-person station crew welcomed the seven-member shuttle crew. Expedition 20 Commander Gennady I. Padalka of Roscosmos stated, “This is a remarkable event for the whole space program.” Polansky responded, “Thirteen is a big number, but we are thrilled to be here.” After exchanging Soyuz seat liners, Kopra joined the Expedition 20 crew and Wakata the STS-127 crew.

Expedition 20, the space station’s first six-person crew and the first, and so far only, time that each of the five space station partners had crew members on board at the same time The first time two Canadians were in space at the same time A medical convention in space – the first time four medical doctors flew in space at the same time
Left: Expedition 20, the space station’s first six-person crew and the first, and so far only, time that each of the five space station partners had crew members on board at the same time. Middle: The first time two Canadians were in space at the same time. Right: A medical convention in space – the first time four medical doctors flew in space at the same time.

STS-127 marked not only the first time that a space shuttle arrived at the station with a six-person crew living aboard, but as it happened, each of the five space station partners had a crew member aboard, a feat not repeated since. The flight also marked the first time that two CSA astronauts worked aboard the space station at the same time. And for the true trivia buffs, the mission marked the first time that four medical doctors worked in space together – an out of this world medical convention!

Transfer of the Exposed Facility from the shuttle to the station Timothy L. Kopra, left, and David A. Wolf work on the station’s truss during the mission’s first spacewalk Douglas G. Hurley, left, and Koichi Wakata of the Japan Aerospace Exploration Agency operate the station’s robotic arm during the first spacewalk
Left: Transfer of the Exposed Facility from the shuttle to the station. Middle: Timothy L. Kopra, left, and David A. Wolf work on the station’s truss during the mission’s first spacewalk. Right: Douglas G. Hurley, left, and Koichi Wakata of the Japan Aerospace Exploration Agency operate the station’s robotic arm during the first spacewalk.

On July 18, the mission’s fourth day, Hurley and Wakata grappled the JEM-EF using the Space Station Remote Manipulator System (SSRMS) or robotic arm, handed it off temporarily to the SRMS operated by Polansky and Payette, moved the station arm into position to grapple it again, and installed it on the end of the Kibo module. Meanwhile, Wolf, with red stripes on his spacesuit, and Kopra, wearing a suit with no stripes, began the mission’s first spacewalk. During the excursion that lasted 5 hours 32 minutes, Wolf and Kopra prepared the JEM for the EF installation and performed other tasks in the shuttle’s payload bay and on the station.

During the second spacewalk, David A. Wolf, left, and Thomas H. Marshburn transfer spare parts to the space station NASA astronaut Douglas G. Hurley, left, and Canadian Space Agency astronaut Julie Payette operate the station’s robotic arm during the second spacewalk
Left: During the second spacewalk, David A. Wolf, left, and Thomas H. Marshburn transfer spare parts to the space station. Right: NASA astronaut Douglas G. Hurley, left, and Canadian Space Agency astronaut Julie Payette operate the station’s robotic arm during the second spacewalk.

The mission’s fifth day involved internal transfers of equipment from the shuttle to the station and the robotic transfer of the Integrated Cargo Carrier (ICC) from the payload bay to the station truss. The ICC carried spare parts that the next day Wolf and Marshburn, wearing dashed red stripes on his spacesuit, transferred to a stowage platform on the station’s exterior during the mission’s second spacewalk, lasting 6 hours and 53 minutes.

An Apollo 11 Moon rock brought to the station to commemorate the 40th anniversary of the first Moon landing Nine of the 13 Expedition 20 and STS-127 crew members share a meal, as NASA astronaut Michael R. Barratt holds the Apollo 11 Moon rock Transfer of the Kibo Experiment Logistics Module from the shuttle to the station
Left: An Apollo 11 Moon rock brought to the station to commemorate the 40th anniversary of the first Moon landing. Middle: Nine of the 13 Expedition 20 and STS-127 crew members share a meal, as NASA astronaut Michael R. Barratt holds the Apollo 11 Moon rock. Right: Transfer of the Kibo Experiment Logistics Module from the shuttle to the station.

The second spacewalk took place on July 20, the 40th anniversary of Apollo 11 landing on the Moon. To commemorate the event, NASA selected a Moon rock returned on that mission and flew it to the space station on STS-119 in March 2009. Expedition 20 astronaut Michael Barratt recorded a video message about the Moon rock, played at a 40th anniversary celebration hosted by the National Air and Space Museum in Washington, D.C., and attended by the Apollo 11 astronauts. The following day, the joint crews continued their work by robotically transferring the JEM Experiment Logistics Module (JEM ELM) and temporarily installing it on the Exposed Facility. Later in the mission, astronauts robotically transferred the three payloads from the ELM to EF.

Christopher J. Cassidy, left, and David A. Wolf during the mission’s third spacewalk Cassidy, left, and Wolf during a battery changeout
Left: Christopher J. Cassidy, left, and David A. Wolf during the mission’s third spacewalk. Right: Cassidy, left, and Wolf during a battery changeout.

Flight Day 8 saw the mission’s third spacewalk, with Wolf making his final excursion, this time accompanied by Cassidy, wearing diagonal red stripes on his suit. Prior to the start of the spacewalk, Hurley and Payette used the station’s arm to relocate the ICC to a different workstation for Wolf and Cassidy to transfer the batteries to the station. As their first task, Wolf and Cassidy prepared the JEM EF for the transfer of the three payload the following day. They managed to transfer two of the four batteries before mission managers decided to shorten the spacewalk due to a slight buildup of carbon dioxide in Cassidy’s suit. The excursion lasted 5 hours and 59 minutes.

Installation of one of the payloads onto the Kibo Exposed Facility (EF) Mark J. Polansky, left, and Koichi Wakata of the Japan Aerospace Exploration Agency, one of the three teams that transferred the EF payloads using Kibo’s robotic arm
Left: Installation of one of the payloads onto the Kibo Exposed Facility (EF). Right: Mark J. Polansky, left, and Koichi Wakata of the Japan Aerospace Exploration Agency, one of the three teams that transferred the EF payloads using Kibo’s robotic arm.

On Flight Day 9, Wakata, assisted by Kopra, inaugurated the operational use of the JEM’s robotic arm by transferring the first payload from the ELM to the EF. Three separate two-person teams transferred each of the three payloads.

Christopher J. Cassidy, left, and Thomas H. Marshburn exchange space station batteries during the mission’s fourth spacewalk Canadian Space Agency astronaut Julie Payette, left, and NASA astronaut Douglas G. Hurley operate the station’s robotic arm during the fourth spacewalk
Left: Christopher J. Cassidy, left, and Thomas H. Marshburn exchange space station batteries during the mission’s fourth spacewalk. Right: Canadian Space Agency astronaut Julie Payette, left, and NASA astronaut Douglas G. Hurley operate the station’s robotic arm during the fourth spacewalk.

On Flight Day 10, Marshburn and Cassidy transferred the remaining four batteries and completed other tasks during the mission’s fourth spacewalk, lasting 7 hours and 12 minutes. Following the battery transfers, Hurley and Payette used the station’s arm to transfer the ICC to Polansky and Hurley operating the shuttle arm, who then stowed it in Endeavour’s payload bay.

The Seattle-Tacoma area The central Florida coast including NASA’s Kennedy Space Center Sicily with Mt. Etna, left, and the “toe” of Italy at right Istanbul straddling Europe, left, and Asia
Left: The Seattle-Tacoma area. Middle left: The central Florida coast including NASA’s Kennedy Space Center. Middle right: Sicily with Mt. Etna, left, and the “toe” of Italy at right. Right: Istanbul straddling Europe, left, and Asia.

With Flight Day 11 given as a crew off duty day, many of the astronauts took part in a favorite activity: looking at and photographing the Earth. They also used the time to catch up on other activities.

Return of the empty Exposed Logistics Module to Endeavour’s payload bay Fisheye view of Christopher J. Cassidy, left, and Thomas H. Marshburn in the U.S. Airlock preparing for the mission’s fifth and final spacewalk Marshburn, left, and Cassidy install cameras on the Kibo Exposed Facility during the fifth and final spacewalk
Left: Return of the empty Exposed Logistics Module to Endeavour’s payload bay. Middle: Fisheye view of Christopher J. Cassidy, left, and Thomas H. Marshburn in the U.S. Airlock preparing for the mission’s fifth and final spacewalk. Right: Marshburn, left, and Cassidy install cameras on the Kibo Exposed Facility during the fifth and final spacewalk.

First thing on Flight Day 12, Payette and Polansky returned the now empty ELM to Endeavour’s payload bay, using the station and shuttle robotic arms. The next day, Marshburn and Cassidy teamed up again for the flight’s fifth and final spacewalk. During the 4-hour 54-minute excursion, they installed a pair of cameras on the Kibo module to help guide future H-II Transfer Vehicle (HTV) cargo spacecraft, the first planned to arrive in September 2009. They also completed a few get ahead tasks. Their excursion brought the total spacewalking time for the mission to 30 hours 30 minutes and marked only the second time that a shuttle mission to the space station completed five spacewalks.

The 13 members of Expedition 20 and STS-127 pose for a final photograph before saying their farewells The crew members exchange farewells, with Koichi Wakata of the Japan Aerospace Exploration Agency, left, appearing a little reluctant to leave after spending 133 days aboard the space station Photograph of the newly installed Exposed Facility on the Kibo Japanese Experiment Module
Left: The 13 members of Expedition 20 and STS-127 pose for a final photograph before saying their farewells. Middle: The crew members exchange farewells, with Koichi Wakata of the Japan Aerospace Exploration Agency, left, appearing a little reluctant to leave after spending 133 days aboard the space station. Right: Photograph of the newly installed Exposed Facility on the Kibo Japanese Experiment Module.

On July 28, the mission’s 14th day, the 13-member joint crew held a brief farewell ceremony, parted company, and closed the hatches between the two spacecraft. With Hurley at the controls, Endeavour undocked from the space station, having spent nearly 11 days as a single spacecraft. Hurley completed a flyaround  of the station, with the astronauts photographing it to document its condition. A final separation burn sent Endeavour on its way.

The International Space Station, with the newly added Exposed Facility and its first payloads, as seen from Endeavour during the departure flyaround. Endeavour casts its shadow on the solar arrays
The International Space Station, with the newly added Exposed Facility and its first payloads, as seen from Endeavour during the departure flyaround. Endeavour casts its shadow on the solar arrays.

The shuttle’s robotic arm grapples the Orbiter Boom Sensor System for the late inspection of Endeavour’s heat shield Deploy of the DRAGONSAT microsatellite Deploy of the ANDE microsatellites
Left: The shuttle’s robotic arm grapples the Orbiter Boom Sensor System for the late inspection of Endeavour’s heat shield. Middle: Deploy of the DRAGONSAT microsatellite. Right: Deploy of the ANDE microsatellites.

The next day, Polansky, Payette, and Hurley used the shuttle’s arm to pick up the OBSS and perform a late inspection of Endeavour’s thermal protection system. On Flight Day 16, the astronauts deployed two satellites. The first, called Dual RF Astrodynamic GPS Orbital Navigation Satellite, or DRAGONSAT, designed by students at the University of Texas, Austin, and Texas A&M University, College Station, consisted of a pair of picosatellites to look at independent rendezvous of spacecraft using GPS. The second, called Atmospheric Neutral Density Experiment-2, or ANDE-2, consisted of a set of Department of Defense microsatellites to look at the density and composition of the atmosphere 200 miles above the Earth. Polansky and Hurley tested Endeavour’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing. The entire crew busied themselves with stowing all unneeded equipment.

Endeavour touches down on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida The welcome home ceremony for the STS-127 crew at Ellington Field in Houston
Left: Endeavour touches down on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Right: The welcome home ceremony for the STS-127 crew at Ellington Field in Houston.

On July 31, the astronauts closed Endeavour’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats, a special recumbent seat for Wakata who had spent the last four months in weightlessness. Polansky fired Endeavour’s two Orbital Maneuvering System engines to bring them out of orbit and heading for a landing half an orbit later. He guided Endeavour to a smooth touchdown at KSC’s Shuttle Landing Facility, capping off a very successful STS-127 mission of 15 days, 16 hours, 45 minutes. They orbited the planet 248 times. Wakata spent 137 days, 15 hours, 4 minutes in space, completing 2,166 orbits of the Earth. Workers at KSC began preparing Endeavour for its next flight, STS-130 in February 2010.

Enjoy the crew narrate a video about the STS-127 mission.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      JAXA (Japan Aerospace Exploration Agency) researchers examined the structures of four titanium-based compounds solidified in levitators in microgravity and on the ground and found that the internal microstructures were generally similar. These results could support development of new materials for use in space manufacturing.

      To produce glass or metal alloys on Earth, raw materials are placed into a container and heated. But reactions between the container and the materials can cause imperfections. The JAXA Electrostatic Levitation Furnace can levitate, melt, and solidify materials without a container. The facility enables measurement of the thermophysical properties of high temperature melts and could accelerate development of innovative materials such as heat resistant ceramics for use in the aerospace and energy industries.
      JAXA (Japan Aerospace Exploration Agency) astronaut Akihiko Hoshide works with the Electrostatic Levitation Furnace.European Space Agency/Thomas Pesquet Satellite 3D imaging of a Peruvian tropical forest demonstrated that measuring leaf traits with remote sensing may provide more accurate predictions of biomass production than structure data such as tree height. Carbon stored or sequestered in forests can help offset emissions that cause climate change, and improved estimates of tropical forest biomass could allow researchers to better evaluate these ecosystems and their offset contributions.

      Global Ecosystem Dynamics Investigation (GEDI) provides high-resolution global observations of Earth’s forests and topography. These observations provide information on carbon and water cycling processes, biodiversity, and habitat, including quantifying carbon stored in vegetation and the potential for future carbon storage. The researchers suggest that estimates of tropical forest biomass could be further improved with data from new satellite missions and by integrating GEDI with dynamic vegetation models that include trait data.

      Learn more from this video and this article.
      The refrigerator-sized Global Ecosystem Dynamics Investigation instrument on the exterior of the International Space Station. NASA/Nick Hague Research indicates that refractive eye surgery is safe, effective, and suitable for astronauts. The study documented stable vision in two astronauts who, a few years prior to flight, underwent photorefractive keratectomy (PRK) and laser-assisted in situ keratomileusis (LASIK), respectively. These visual correction procedures can reduce the logistical complications of wearing glasses or contact lenses in space.

      International Space Station Medical Monitoring collects health data from crew members before, during, and after spaceflight.  The medical evaluation requirements, including vision assessment, apply to all crew members and are part of efforts by all international partners to maintain crew health, ensure mission success, and enable crew members to return to normal life on Earth after their missions.
      NASA astronauts Terry Virts (bottom) and Scott Kelly (top) perform eye exams as part of ongoing studies into crew vision health. NASA JAXA researchers report that accurately assessing the velocity of airflow in front of a spreading flame makes it possible to predict the flammability of thin, flat materials in microgravity. These results mean it could be possible to use ground tests to predict the flammability of solid materials and thus ensure fire safety in spacecraft and space habitations.

      The JAXA Fundamental Research on International Standard of Fire Safety in Space – Base for Safety of Future Manned Missions (FLARE) investigation tested the flammability of various solid materials in different configurations, including filter paper. Microgravity significantly affects combustion phenomena such as the spread of flame over solid materials; while flames cannot spread over solid materials under low-speed oxygen flow in Earth’s gravity, they can in microgravity due to the lack of buoyancy. Testing of the flammability of materials for spacecraft previously has not considered the effect of gravity, and results from this investigation could address this issue, significantly improving fire safety on future exploration missions.
      JAXA astronaut Satoshi Furukawa sets up hardware for the Fundamental Research on International Standard of Fire Safety in Space – Base for Safety of Future Manned Missions investigation. NASA/Jasmin MoghbeliView the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 14 min read
      Aura at 20 Years
      Introduction
      In the 1990s and early 2000s, an international team of engineers and scientists designed an integrated observatory for atmospheric composition – a bold endeavor to provide unprecedented detail that was essential to understanding how Earth’s ozone (O3) layer and air quality respond to changes in atmospheric composition caused by human activities and natural phenomena. This work addressed a key NASA Earth science objective. Originally referred to as Earth Observing System (EOS)–CHEM (later renamed Aura,) the mission would become the third EOS Flagship mission, joining EOS-AM 1 (Terra) launched in 1999 and EOS-PM 1 (Aqua), launched in 2002. The Aura spacecraft – see Figure 1 – is similar in design to Terra and identical to Aqua. Aura and its four instruments were launched on July 15, 2004 from Vandenberg Air Force Base (now Space Force Base) in California – see Photo.
      Figure 1. An artist’s representation of the Aura satellite in orbit around the Earth. Image credit: NASA Photo.  A photo of the nighttime launch of Aura on July 15, 2004. Image credit: NASA In 2014 The Earth Observer published an article called  “Aura Celebrates Ten Years in Orbit,” [Nov–Dec 2014, 26:6, pp. 4–18] which details the history of Aura and the first decade of science resulting from its data. Therefore, the current article will focus on the science and applications enabled by Aura data in the last decade. It also examines Aura’s future and the legacies of the spacecraft’s instruments. Readers interested in more information on Aura and the scientific research and applications enabled by its data can visit the Aura website.
      Recent Science Achievements from Aura’s Instrument (in alphabetical order)
      High Resolution Dynamics Limb Sounder
      The capabilities of the High Resolution Dynamics Limb Sounder (HIRDLS) were compromised at launch and operations ceased in March 2008 due to an image chopper stall. Nevertheless, the HIRDLS team was able to produce a three-year dataset notable for high vertical resolution profiles of greater than 1 km (0.62 mi) for temperature and O3 in the upper troposphere to the mesosphere. Though limited, the HIRDLS dataset demonstrated the incredible potential of the instrument for atmospheric research. So much so, that scientists are now in the study phase for a new instrument, part of the proposed Stratosphere Troposphere Response using Infrared Vertically-Resolved Light Explorer (STRIVE) mission, which would have similar capabilities as HIRDLS with advancements in spectral and spatial imaging. (STRIVE is one of four missions currently undergoing one-year concept studies, as part of NASA’s Earth System Explorer Program, which was established in the 2017 Earth Science Decadal Survey. Two winning proposals will be chosen in 2025 for full development and launch in 2030 or 2032.)
      Microwave Limb Sounder
      The Microwave Limb Sounder (MLS) was developed to study: 1) the evolution and recovery of the stratospheric O3 layer; 2) the role of the stratosphere, notably stratospheric humidity, in climate feedback processes; and 3) the behavior of air pollutants in the upper troposphere. MLS measures vertical profiles from the upper troposphere at ~10 km altitude (6.2 mi) to the mesosphere at ~90 km (56 mi) of 16 trace gases, temperature, geopotential height, and cloud ice. Its unique measurement suite has made it the “go-to” instrument for most data-driven studies of middle atmosphere composition over the last two decades.
      Data collection during the past decade has highlighted the ability of the stratosphere to exhibit surprising and/or envelope-redefining behavior, (Envelope-redefining is a term that is used to refer to an event that greatly exceeded previous observed ranges of this event.) MLS observations have been crucial for the discovery and diagnoses of these extreme events. For example, in 2019, a stratospheric sudden warming over the southern polar cap in September – rare in the Antarctic – curtailed chemical processing, leading to an anomalously weak O3 hole. As another example, prolonged hot and dry conditions in Australia during the subsequent 2019–2020 southern summer promoted the catastrophic “Australian New Year” (ANY) fires. MLS observations showed that fire-driven pyrocumulonimbus convection lofted plumes of polluted air into the stratosphere to a degree never seen during the Aura mission.
      Apart from those individual plumes, smoke pervaded the southern lower stratosphere, leading to unprecedented perturbations in southern midlatitude lower stratospheric composition, with chlorine (Cl) shifting from its main reservoir species, hydrochloric acid (HCl), into the O3-destroying form, hypochlorite (ClO). Peak anomalies in chlorine species occurred in mid-2020 – months after the fires. State-of-the-art atmospheric chemistry models in which wildfire smoke has properties similar to those of sulfate (SO4) aerosols were unable to reproduce the observed chemical redistribution. New model simulations assuming that HCl dissolves more readily in smoke than in SO4 particles under typical midlatitude stratospheric conditions better match the MLS observations.
      As extraordinary as these events were, their impacts on the stratosphere were spectacularly eclipsed by the impact of the January 2022 eruption of the Hunga Tonga-Hunga Ha’apai  (Hunga) volcano in the Pacific Ocean. The Hunga eruption lofted about 150 Tg of water vapor into the stratosphere – with initial injections reaching into the mesosphere. The eruption almost instantaneously increased total stratospheric water vapor by about 10%. MLS was the only sensor able to track the plume in the first weeks following the eruption. The Hunga humidity enhancement resulted in an envelope-redefining, low-temperature anomaly in the stratosphere, in turn inducing changes in stratospheric circulation. Repartitioning of southern midlatitude Cl also occurred, though to a lesser degree than following the ANY fires and in a manner broadly consistent with known chemical mechanisms. The Hunga water vapor enhancement has not substantially declined in the 2.5 years since the eruption, and studies indicate that it will likely endure for several more years.
      Impacts of the Hunga humidity on polar O3 loss have also been investigated. The timing and location of the eruption were such that the plume reached high southern latitudes only after the 2022 Antarctic winter vortex had developed. Since the strong winds at the vortex edge present a transport barrier, polar stratospheric cloud (PSC) formation and O3 hole evolution were largely unaffected. When the vortex broke down at the end of the 2022 Antarctic winter, moist air flooded the southern polar region, increasing humidity in the region. Cold, moist conditions led to unusually early and vertically extensive PSC formation and Cl activation, but chemical processing ran to completion by mid-July, as typically occurs in southern winter. The cumulative chemical O3 losses ended up being unremarkable throughout the lower stratosphere. The Hunga plume was also largely excluded from the 2022–2023 Arctic vortex. The 2023–2024 Arctic O3 loss season was characterized by conditions that were dynamically disturbed and not persistently cold, and springtime O3 was near or above average. The extraordinary stratospheric hydration from Hunga has so far had minimal impact on chemical processing and O3 loss in the polar vortices in either hemisphere – see Figure 2.
      Figure 2. The evolution of MLS water vapor anomalies (deviations from the baseline 2005–2021 climatology) from January 2019 through December 2023 as a function of equivalent latitude at 700 K potential temperature in the middle stratosphere at ~27 km altitude (17 mi). Black contours mark the approximate edge of the polar vortex. The green triangle marks the time of the main Hunga eruption at latitude 20.54°S on January 15, 2022. Figure credit: Updated and adapted from a 2023 paper in Geophysical Research Letters With the end of Aura and MLS, the future for stratospheric limb sounding observations is unclear. While stratospheric O3 and aerosol will continue to be measured on a daily, near-global basis by the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (OMPS-LP) instruments on the Suomi National Polar-orbiting Partnership (Suomi NPP) and Joint Polar Satellite System (JPSS-2, -3, and -4) satellites, there are no confirmed plans for daily, near-global observations of either long-lived trace gases or halogenated species – both of which are needed to diagnose observed changes in O3. The only other sensor making such measurements, the Canadian Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE–FTS), is itself older than MLS and, as a solar occultation instrument, measures only 30 profiles-per-day, taking around a month to cover all latitudes. Similarly, no other sensor is set to provide daily, near-global measurements of stratospheric water vapor until the launch of the Canadian High-altitude Aerosols, Water vapour and Clouds (HAWC) mission in the early 2030s. Some potential new mission concepts are under consideration by both NASA and ESA, but they are subject to competition. Even if both instruments are ultimately selected, gaps in the records of many species measured by MLS are inevitable. The MLS PI is leading an effort to develop new technologies that would allow an instrument that could restart MLS measurements to be built in a far smaller mass/power footprint (e.g., 60 kg, 90 W vs. 500 kg, 500 W for Aura MLS), and technologies exist for yet-smaller MLS-like instruments that could assume the legacy of the highly impactful MLS record at low cost in future decades.
      Ozone Monitoring Instrument
      The Ozone Monitoring Instrument (OMI) continues the Total Ozone Mapping Spectrometer (TOMS) record for total O3 and other atmospheric parameters related to O3 chemistry and climate. It employs hyperspectral imaging in a push-broom mode to observe solar backscatter radiation in the visible and ultraviolet.
      OMI is a Dutch–Finnish contribution to the Aura mission, and its remarkable stability and revolutionary two-dimensional (2D) detector (spatial in one dimension and spectral in the other) has produced a two-decade record of science- and trend-quality datasets of atmospheric column observations. OMI continues the long-term record of total column O3 measurements begun in 1979, and its observations of nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (CH2O), and absorbing aerosols provided exceptional spatial resolution for study of anthropogenic and natural trends and variations of these pollutants around the world. Its radiometric and spectral stability has made it a valuable contributor for solar spectral irradiance measurements to complement dedicated solar instruments on other satellites. The many achievements made possible with OMI are documented in a review article.
      OMI’s multidecade data records have revolutionized the ability to monitor air quality changes around the world, even at the sub-urban level. In particular, OMI NO2 data have been transformative. Recently, these data were used to track changes in air pollution associated with efforts to control the spread of SARS-CoV-2. OMI’s long, stable data record allowed for changes in pollution levels in 2020 – at the height of global lockdowns – to be put into historical perspective, especially within the envelope of typical year-to-year variations associated with meteorological variability. Many research studies assessed the impact of the pandemic lockdowns on air pollution, supporting novel uses of OMI data for socioeconomic-related research. For example, OMI NO2 data were shown to serve as an environmental indicator to evaluate the effectiveness of lockdown measures and as a significant predictor for the deceleration of COVID-19 spread. OMI NO2 data were also used as a proxy for the economic impact of the pandemic as NO2 is emitted during fossil fuel combustion, which is another proxy for economic activity since most global economies are driven by fossil fuels – see Animation.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Animation. OMI data show changes in average levels of NO2 from March 20 to May 20 for each year from 2015 to 2023 over the northeast U.S. Levels in 2020 were ~30%  lower relative to previous years because of efforts to slow the spread of COVID-19. OMI data indicate similar reductions in NO2 in cities across the globe in early 2020 and a gradual recovery in pollutant emissions in late 2020 into 2023. Additional images for other world cities and regions are available through the NASA Science Visualization Studio website and the Air Quality Observations from Space website. Animation credit: NASA Science Visualization Studio OMI’s datasets are being continued by successor 2D detector array instruments, such as the previously mentioned Copernicus Sentinel-5P TROPOMI mission, the Republic of Korea’s Geostationary Environment Monitoring Spectrometer (GEMS), and NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO). All of these missions have enhanced spatial resolution relative to OMI, but have benefited from the innovative retrieval algorithms pioneered by OMI’s retrieval teams.
      Tropospheric Emission Spectrometer
      The Tropospheric Emission Spectrometer (TES) provided vertically-resolved distributions of a number of tropospheric constituents, e.g., O3, methane (CH4), and various volatile organic compounds. The instrument was decommissioned in 2018 due to signs of aging associated with a failing Interferometer Control System motor encoder bearing. Nevertheless, TES measurements led to a number of key results regarding changes in atmospheric composition that were published over the past 10 years.
      Measurements from TES, OMI, and MLS showed that transport of O3 and its precursors from East Asia offset about 43% of the decline expected in O3 over the western U.S., based on emission reductions observed there over the period 2005–2010. TES megacity measurements revealed that the frequency of high-O3 days is particularly pronounced in South Asian megacities, which typically lack ground-based pollution monitoring networks. TES water vapor and semi-heavy water measurements indicated that water transpired from Amazonian vegetation becomes a significant moisture source for the atmosphere, during the transition from dry to wet season. The increasing water vapor provides the fuel needed to start the next rainy season. Measurements of CH4 from TES and carbon monoxide (CO) from Measurements of Pollution in the Troposphere (MOPITT) on Terra showed that CH4 emissions from fires declined at twice the rate expected from changes in burned area from 2004–2014. This finding helped to balance the CH4 budget for this period, because it offset some of the large increases in fossil fuel and wetland emissions. Through direct measurement of the O3 greenhouse gas effect, TES instantaneous radiative kernels revealed the impact of hydrological controls on the O3 radiative forcing and were used to show substantial radiative bias in Intergovernmental Panel on Climate Change (IPCC) chemistry–climate models. The TES team pioneered the retrieval of a number of species, such as peroxyacetyl nitrate, carbonyl sulfide, and ethylene.
      The spirit of TES lives on through the NASA TRopospheric Ozone and its Precursors from Earth System Sounding (TROPESS) project, which generates data products of O3 and other atmospheric constituents by processing data from multiple satellites through a common retrieval algorithm and ground data system. TROPESS builds upon the success of TES and is considered a bridge to allow the development of a continuous record of O3 and other trace gas species as a follow-on to TES.
      Future of Aura
      In April 2023, Aura’s mission operations team performed the last series of maneuvers to maintain its position in the A-Train constellation of satellites. Since then, Aura has begun drifting. As of July 2024, Aura has descended ~5 km (3 mi) in altitude from ~700 km (435 mi) and its equator crossing time has increased by ~9 min from ~1:44 PM local time. This amount of drift is small, and the Aura MLS and OMI retrieval teams are ensuring the science- and trend-quality of the datasets.
      As Aura continues to drift, the amount of sunlight reaching its solar panels will slowly decrease and will no longer be able to generate sufficient power to operate the spacecraft and instruments by mid-2026. At this point, the amount of local time drift will still be relatively small – less than one hour – so the retrieval teams will be able to ensure quality for most data products until this time.
      In the remaining years, Aura’s aging but remarkably stable instruments will continue to add to the unprecedented two decades of science- and trend-quality data of numerous key tropospheric and stratospheric constituents. Aura data will be key for monitoring the evolution of the Hunga volcanic plume and understanding its continued impact on the chemistry and dynamics of the stratosphere. Observations from MLS and OMI will also be used to evaluate data from new and upcoming instruments (e.g., ESA’s Atmospheric Limb Tracker for Investigation of Upcoming Stratosphere (Altius); NASA’s TEMPO, Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), and Total and Spectral Solar Irradiance Sensor-2 (TSIS-2) missions, or at least used to help minimize the gaps between data collections.
      Aura’s Scientific Legacy
      The Aura mission has been nothing short of transformative for atmospheric research and applied sciences. The multidecade, stable datasets have furthered process-based understanding of the chemistry and dynamics of atmospheric trace gases, especially those critical for understanding the causes of trends and variations in Earth’s protective ozone layer.  
      The two decades that Aura has flown have been marked by profound atmospheric changes and numerous serendipitous events, both natural and man-made. The data from Aura’s instruments have given scientists and applied scientists an unparalleled view – including at the sub-urban scale – of air pollution around the world, clearly showing the influence of rapid industrialization, environmental regulations designed to improve air quality, seasonal agricultural burning, catastrophic wildfires, and even a global pandemic, on the air we breathe. The Aura observational record spans the period that includes the decline of O3-destroying substances, and Aura data illustrate the beginnings of the recovery of the Antarctic O3 hole, a result of unparalleled international cooperation to reduce these substances.
      Aura’s datasets have given a generation of scientists the most comprehensive global view to date of critical gases in Earth’s atmosphere and the chemical and dynamic processes that shape their concentrations. Many, but not all, of these datasets are being/will be continued by successor instruments that have benefited from the novel technologies incorporated into the design of Aura’s instruments as well as the innovative retrieval algorithms pioneered by Aura’s retrieval teams.
      Acknowledgements
      The author wishes to acknowledge the decades of hard work of the many hundreds of people who have contributed to the success of the international Aura mission. There are too many to acknowledge here and I’m sure that many names from the early days are lost to time. I would like to offer special thanks to those scientists who, back in the 1980s, first dreamed of the mission that would become Aura.
      Bryan Duncan
      NASA’s Goddard Space Flight Center (GSFC)
      bryan.n.duncan@nasa.gov
      Share








      Details
      Last Updated Sep 16, 2024 Related Terms
      Earth Science View the full article
    • By NASA
      The Apollo 11 mission in July 1969 completed the goal set by President John F. Kennedy in 1961 to land a man on the Moon and return him safely to the Earth before the end of the decade. At the time, NASA planned nine more Apollo Moon landing missions of increasing complexity and an Earth orbiting experimental space station. No firm human space flight plans existed once these missions ended in the mid-1970s. After taking office in 1969, President Richard M. Nixon chartered a Space Task Group (STG) to formulate plans for the nation’s space program for the coming decades. The STG’s proposals proved overly ambitious and costly to the fiscally conservative President who chose to take no action on them.

      Left: President John F. Kennedy addresses a Joint Session of Congress in May 1961. Middle: President Kennedy addresses a crowd at Rice University in Houston in September 1962. Right: President Lyndon B. Johnson addresses a crowd during a March 1968 visit to the Manned Spacecraft Center, now NASA’s Johnson Space Center, in Houston.
      On May 25, 1961, before a Joint Session of Congress, President John F. Kennedy committed the United States to the goal, before the decade was out, of landing a man on the Moon and returning him safely to the Earth. President Kennedy reaffirmed the commitment during an address at Rice University in Houston in September 1962. Vice President Lyndon B. Johnson, who played a leading role in establishing NASA in 1958, under Kennedy served as the Chair of the National Aeronautics and Space Council. Johnson worked with his colleagues in Congress to ensure adequate funding for the next several years to provide NASA with the needed resources to meet that goal.
      Following Kennedy’s assassination in November 1963, now President Johnson continued his strong support to ensure that his predecessor’s goal of a Moon landing could be achieved by the stipulated deadline. But with increasing competition for scarce federal resources from the conflict in southeast Asia and from domestic programs, Johnson showed less interest in any space endeavors to follow the Apollo Moon landings. NASA’s annual budget peaked in 1966 and began a steady decline three years before the agency met Kennedy’s goal. From a budgetary standpoint, the prospects of a vibrant, post-Apollo space program didn’t look all that rosy, the triumphs of the Apollo missions of 1968 and 1969 notwithstanding.

      Left: On March 5, 1969, President Richard M. Nixon, left, introduces Thomas O. Paine as the NASA Administrator nominee, as Vice President Spiro T. Agnew looks on. Middle: Proposed lunar landing sites through Apollo 20, per August 1969 NASA planning. Right: An illustration of the Apollo Applications Program experimental space station that later evolved into Skylab.
      Less than a month after assuming the Presidency in January 1969, Richard M. Nixon appointed a Space Task Group (STG), led by Vice President Spiro T. Agnew as the Chair of the National Aeronautics and Space Council, to report back to him on options for the American space program in the post-Apollo years. Members of the STG included NASA Acting Administrator Thomas O. Paine (confirmed by the Senate as administrator on March 20), the Secretary of Defense, and the Director of the Office of Science and Technology. At the time, the only approved human space flight programs included lunar landing missions through Apollo 20 and three long-duration missions to an experimental space station based on Apollo technology that evolved into Skylab.
      Beyond a general vague consensus that the United States human space flight program should continue, no approved projects existed once these missions ended by about 1975. With NASA’s intense focus on achieving the Moon landing within President Kennedy’s time frame, long-term planning for what might follow the Apollo Program garnered little attention. During a Jan. 27, 1969, meeting at NASA chaired by Acting Administrator Paine, a general consensus emerged that the next step after the Moon landing should involve the development of a 12-person earth-orbiting space station by 1975, followed by an even larger outpost capable of housing up to 100 people “with a multiplicity of capabilities.” In June, with the goal of the Moon landing almost at hand, NASA’s internal planning added the development of a space shuttle by 1977 to support the space station, the development of a lunar base by 1976, and the highly ambitious idea that the U.S. should prepare for a human mission to Mars as early as the 1980s. NASA presented these proposals to the STG for consideration in early July in a report titled “America’s Next Decades in Space.”

      Left: President Richard M. Nixon, right, greets the Apollo 11 astronauts aboard the U.S.S. Hornet after their return from the Moon. Middle: The cover page of the Space Task Group (STG) Report to President Nixon. Right: Meeting in the White House to present the STG Report to President Nixon. Image credit: courtesy Richard Nixon Presidential Library and Museum.
      Still bathing in the afterglow of the successful Moon landing, the STG presented its 29-page report “The Post-Apollo Space Program:  Directions for the Future” to President Nixon on Sep. 15, 1969, during a meeting at the White House. In its Conclusions and Recommendations section, the report noted that the United States should pursue a balanced robotic and human space program but emphasized the importance of the latter, with a long-term goal of a human mission to Mars before the end of the 20th century. The report proposed that NASA develop new systems and technologies that emphasized commonality, reusability, and economy in its future programs. To accomplish these overall objectives, the report presented three options:

      Option I – this option required more than a doubling of NASA’s budget by 1980 to enable a human Mars mission in the 1980s, establishment of a lunar orbiting space station, a 50-person Earth orbiting space station, and a lunar base. The option required a decision by 1971 on development of an Earth-to-orbit transportation system to support the space station. The option maintained a strong robotic scientific and exploration program.

      Option II – this option maintained NASA’s budget at then current levels for a few years, then anticipated a gradual increase to support the parallel development of both an earth orbiting space station and an Earth-to-orbit transportation system, but deferred a Mars mission to about 1986. The option maintained a strong robotic scientific and exploration program, but smaller than in Option I.

      Option III – essentially the same as Option II but deferred indefinitely the human Mars mission.
      In separate letters, both Agnew and Paine recommended to President Nixon to choose Option II. 

      Left: Illustration of a possible space shuttle, circa 1969. Middle: Illustration of a possible 12-person space station, circa 1969. Right: An August 1969 proposed mission scenario for a human mission to Mars.
      The White House released the report to the public at a press conference on Sep. 17 with Vice President Agnew and Administrator Paine in attendance. Although he publicly supported a strong human spaceflight program, enjoyed the positive press he received when photographed with Apollo astronauts, and initially sounded positive about the STG options, President Nixon ultimately chose not to act on the report’s recommendations.  Nixon considered these plans too grandiose and far too expensive and relegated NASA to one America’s domestic programs without the special status it enjoyed during the 1960s. Even some of the already planned remaining Moon landing missions fell victim to the budgetary axe.
      On Jan. 4, 1970, NASA had to cancel Apollo 20 since the Skylab program needed its Saturn V rocket to launch the orbital workshop. In 1968, then NASA Administrator James E. Webb had turned off the Saturn V assembly line and none remained beyond the original 15 built under contract. In September 1970, reductions in NASA’s budget forced the cancellation of two more Apollo missions, and  in 1971 President Nixon considered cancelling two more. He reversed himself and they flew as Apollo 16 and Apollo 17 in 1972, the final Apollo Moon landing missions.

      Left: NASA Administrator James C. Fletcher, left, and President Richard M. Nixon announce the approval to proceed with space shuttle development in 1972. Middle: First launch of the space shuttle in 1981. Right: In 1984, President Ronald W. Reagan directs NASA to build a space station.
      More than two years after the STG submitted its report, in January 1972 President Nixon directed NASA Administrator James C. Fletcher to develop the Space Transportation System, the formal name for the space shuttle, the only element of the recommendations to survive the budgetary challenges.  NASA anticipated the first orbital flight of the program in 1979, with the actual first flight occurring two years later. Twelve years elapsed after Nixon’s shuttle decision when President Ronald W. Reagan approved the development of a space station, the second major component of the STG recommendation.  14 years later, the first element of that program reached orbit. In those intervening years, NASA had redesigned the original American space station, leading to the development of a multinational orbiting laboratory called the International Space Station. Humans have inhabited the space station continuously for the past quarter century, conducting world class and cutting edge scientific and engineering research. Work on the space station helps enable future programs, returning humans to the Moon and later sending them on to Mars and other destinations.

      The International Space Station as it appeared in 2021.
      Explore More
      7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 6 days ago 9 min read 30 Years Ago: STS-64 Astronauts Test a Spacewalk Rescue Aid
      Article 6 days ago 5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
      Article 2 weeks ago View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 5 min read
      Sols 4304-4006: 12 Years, 42 Drill Holes, and Now… 1 Million ChemCam Shots!
      In celebration of ChemCam’s milestone, here is a stunning image from its remote micro imager, showing details in the landscape far away. This image was taken by Chemistry & Camera (ChemCam) onboard NASA’s Mars rover Curiosity on Sol 4302 — Martian day 4,302 of the Mars Science Laboratory mission — on Sept. 12, 2024, at 09:20:51 UTC. NASA/JPL-Caltech Earth planning date: Friday, Sept. 13, 2024
      Today, I need to talk about ChemCam, our laser and imaging instrument on the top of Curiosity’s mast. It one of the instruments in the “head” that gives Curiosity that cute look as if it were looking around tilting its head down to the rocks at the rover’s wheels. On Monday, 19th August the ChemCam team at CNES in France planned the 1 millionth shot and Curiosity executed it on the target Royce Lake on sol 4281 on Mars. Even as an Earth scientist used to really big numbers, this is a huge number that took me a while to fully comprehend. 1 000 000 shots! Congratulations, ChemCam, our champion for getting chemistry from a distance – and high-resolution images, too. If you are now curious how Curiosity’s ChemCam instrument works, here is the NASA fact sheet. And, of course, the team is celebrating, which is expressed by those two press releases, one from CNES in France and one from Los Alamos National Laboratory, the two institutions who collaborated to develop and build ChemCam and are now running the instrument for over 12 years! And the PI, Dr Nina Lanza from Los Alamos informs me that the first milestone – 10000 shots was reached as early as Sol 42, which was the sol the DAN instrument used its active mode for the first time. But before I am getting melancholic, let’s talk about today’s plan!
      The drive ended fairly high up in the terrain, and that means we see a lot of the interesting features in the channel and generally around us. So, we are on a spot a human hiker would probably put the backpack down, take the water bottle out and sit down with a snack to enjoy the view from a nice high point in the landscape. Well, no such pleasures for Curiosity – and I am pretty sure sugar, which we humans love so much, wouldn’t be appreciated by rover gears anyway. So, let’s just take in the views! And that keeps Mastcam busy taking full advantage of our current vantage point. We have a terrain with lots of variety in front of us, blocks, boulders, flatter areas and the walls are layered, beautiful geology. Overall there are 11 Mastcam observations in the plan adding up to just about 100 individual frames, not counting those taken in the context of atmospheric observations, which are of course also in the plan. The biggest mosaics are on the targets “Western Deposit,” “Balloon Dome,” and “Coral Meadow.” Some smaller documentation images are on the targets “Wales Lake,” “Gnat Meadow,” and “Pig Chute.”
      ChemCam didn’t have long to dwell on its milestone, as it’s busy again today. Of course, it will join Mastcam in taking advantage of our vantage point, taking three remote micro imager images on the landscape around us. LIBS chemistry investigations are targeting “Wales Lake,” “Gnat Meadow,” and “Pig Chute.” APXS is investigating two targets, “College Rock” and “Wales Lake,” which will also come with MAHLI documentation. With all those investigations together, we’ll be able to document the chemistry of many targets around us. There is such a rich variety of dark and light toned rocks, and with so much variety everywhere, it’s hard to choose and the team is excited about the three targeted sols … and planning over 4 hours of science over the weekend!
      The next drive is planned to go to an area where there is a step in the landscape. Geologists love those steps as they give insights into the layers below the immediate surface. If you have read the word ‘outcrop’ here, then that’s what that means: access to below the surface. But there are also other interesting features in the area, hence we will certainly have an interesting workspace to look at! But getting there will not be easy as the terrain is very complex, so we cannot do it in just one drive. I think there is a rule of thumb here: the more excited the geo-team gets, the more skills our drivers need. Geologists just love rocks, but of course, no one likes driving offroad in a really rocky terrain – no roads on Mars. And right now, our excellent engineers have an extra complication to think about: they need to take extra care where and how to park so Curiosity can actually communicate with Earth. Why? Well, we are in a canyon, and those of you liking to hike, know what canyons mean for cell phone signals… yes, there isn’t much coverage, and that’s the same for Curiosity’s antenna. This new NASA video has more information and insights into the planning room, too! So, we’ll drive halfway to where we want to be but I am sure there will be interesting targets in the new workspace, the area is just so, so complex, fascinating and rich!
      And that’s after Mars for you, after 12 years, 42 drill holes, and now 1 Million ChemCam shots. Go Curiosity go!!!
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Sep 13, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint


      Article


      4 hours ago
      2 min read Margin’ up the Crater Rim!


      Article


      3 days ago
      3 min read Sols 4300-4301: Rippled Pages


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      The International Space Station is pictured from the SpaceX Crew Dragon Endeavour during a fly around.NASA NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov are headed to the International Space Station for the agency’s SpaceX Crew-9 mission in September. Once on station, these crew members will support scientific investigations that include studies of blood clotting, effects of moisture on plants grown in space, and vision changes in astronauts.

      Here are details on some of the work scheduled during the Crew-9 expedition:

      Blood cell development in space
      Megakaryocytes Orbiting in Outer Space and Near Earth (MeF1) investigates how environmental conditions affect the development and function of megakaryocytes and platelets. Megakaryocytes, large cells found in bone marrow, and platelets, pieces of these cells, play important roles in blood clotting and immune response.

      “Understanding the development and function of megakaryocytes and platelets during long-duration spaceflight is crucial to safeguarding the health of astronauts,” said Hansjorg Schwertz, principal investigator, at the University of Utah. “Sending megakaryocyte cell cultures into space offers a unique opportunity to explore their intricate differentiation process. Microgravity also may impact other blood cells, so the insights we gain are likely to enhance our overall comprehension of how spaceflight influences blood cell production.”

      Results could provide critical knowledge about the risks of changes in inflammation, immune responses, and clot formation in spaceflight and on the ground.
      Scanning electron-microscopy image of human platelets prior to launch to the International Space Station.University of Utah/Megakaryocytes PI Team Patches for NICER
      The Neutron Star Interior Composition Explorer (NICER) telescope on the exterior of the space station measures X-rays emitted by neutron stars and other cosmic objects to help answer questions about matter and gravity.

      In May 2023, NICER developed a “light leak” that allows sunlight to interfere with daytime measurements. Special patches designed to cover some of the damage will be installed during a future spacewalk, returning the instrument to around-the-clock operation.

      “This will be the fourth science observatory and first X-ray telescope in orbit to be repaired by astronauts,” said principal investigator Keith Gendreau at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In just a year, we diagnosed the problem, designed and tested a solution, and delivered it for launch. The space station team — from managers and safety experts to engineers and astronauts — helped us make it happen. We’re looking forward to getting back to normal science operations.”
      This view shows NICER’s 56 X-ray concentrators. Astronauts plan to cover some of them with special patches on a future spacewalk. NASA Vitamins for vision
      Some astronauts experience vision changes, a condition called Spaceflight-Associated Neuro-ocular Syndrome. The B Complex investigation tests whether a daily B vitamin supplement can prevent or mitigate this problem and assesses how genetics may influence individual response.

      “We still do not know exactly what causes this syndrome, and not everyone gets it,” said Sara Zwart, principal investigator, at the University of Texas Medical Branch, Houston. “It is likely many factors, and biological variations that make some astronauts more susceptible than others.”

      One such variation could be related to a metabolic pathway that requires B vitamins to function properly. Inefficiencies in this pathway can affect the inner lining of blood vessels, resulting in leaks that may contribute to vision changes. Providing B vitamins known to affect blood vessel function positively could minimize issues in genetically at-risk astronauts.

      “The concept of this study is based on 13 years of flight and ground research,” Zwart said. “We are excited to finally flight test a low-risk countermeasure that could mitigate the risk on future missions, including those to Mars.”
      NASA astronaut Mark Vande Hei conducts a vision exam on the International Space StationNASA Watering the space garden
      As people travel farther from Earth for longer, growing food becomes increasingly important. Scientists conducted many plant growth experiments on the space station using its Veggie hardware, including Veg-01B, which demonstrated that ‘Outredgeous’ red romaine lettuce is suitable for crop production in space.

      Plant Habitat-07 uses this lettuce to examine how moisture conditions affect the nutritional quality and microbial safety of plants. The Advanced Plant Habitat controls humidity, temperature, air, light, and soil moisture, creating the precise conditions needed for the experiment.

      Using a plant known to grow well in space removes a challenging variable from the equation, explained Chad Vanden Bosch, principal investigator at Redwire, and this lettuce also has been proven to be safe to consume when grown in space.

      “For crews building a base on the Moon or Mars, tending to plants may be low on their list of responsibilities, so plant growth systems need to be automated,” Bosch said. “Such systems may not always provide the perfect growing conditions, though, so we need to know if plants grown in suboptimal conditions are safe to consume.”
      This preflight image shows lettuce grown under control (left) and flood (right) moisture treatments. Plant Habitat-07 team Melissa Gaskill
      International Space Station Research Communications Team
      NASA’s Johnson Space Center
      Search this database of scientific experiments to learn more about those mentioned in this article.
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      Space Station Research and Technology
      Station Benefits for Humanity
      Humans In Space
      View the full article
  • Check out these Videos

×
×
  • Create New...