Jump to content

15 Years Ago: STS-127 Delivers Japanese External Platform to Space Station


NASA

Recommended Posts

  • Publishers

On July 15, 2009, space shuttle Endeavour began its 23rd trip into space, on the 2JA mission to the International Space Station, the 29th shuttle flight to the orbiting lab. During the 16-day mission, the seven-member STS-127 crew, working with Expedition 20, the first six-person crew aboard the station, completed the primary objectives of the mission. The flight marked the first time 13 people worked about the station at the same time. They added the Exposed Facility (EF) to the Kibo Japanese Experiment Module (JEM), including its first three payloads, and performed a crew exchange of long-duration crew members. The tasks involved five complex space walks and extensive robotic activities using three different manipulator systems during 11 days of docked operations.

The STS-127 crew patch Official photograph of the STS-127 crew of David A. Wolf, left, Christopher J. Cassidy, Douglas G. Hurley, Julie Payette of Canada, Mark L. Polansky, Thomas H. Marshburn, and Timothy L. Kopra The patch for the 2J/A mission
Left: The STS-127 crew patch. Middle: Official photograph of the STS-127 crew of David A. Wolf, left, Christopher J. Cassidy, Douglas G. Hurley, Julie Payette of Canada, Mark L. Polansky, Thomas H. Marshburn, and Timothy L. Kopra. Right: The patch for the 2J/A mission.

The seven-person STS-127 crew consisted of Commander Mark L. Polansky, Pilot Douglas G. Hurley, and Mission Specialists David A. Wolf, Christopher J. Cassidy, Julie Payette of the Canadian Space Agency (CSA), Thomas H. Marshburn, and Timothy L. Kopra. Primary objectives of the mission included the addition of the Exposed Facility (EF) to the Kibo Japanese Experiment Module (JEM) and the long-duration crew member exchange of Kopra for Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), who had been aboard the space station since March 2009 as a member of Expeditions 18, 19, and 20.

The STS-127 crew during their preflight press conference at NASA’s Johnson Space Center in Houston The STS-127 payloads in Endeavour’s cargo bay at Launch Pad 39A at NASA’s Kennedy Space Center in Florida Space shuttle Endeavour on Launch Pad 39A a few days before launch
Left: The STS-127 crew during their preflight press conference at NASA’s Johnson Space Center in Houston. Middle: The STS-127 payloads in Endeavour’s cargo bay at Launch Pad 39A at NASA’s Kennedy Space Center in Florida. Right: Space shuttle Endeavour on Launch Pad 39A a few days before launch.

Endeavour returned from its previous mission, STS-126, on Nov. 28, 2008. It arrived in the Orbiter Processing Facility at NASA’s Kennedy Space Center (KSC) on Dec. 13, moved to the Vehicle Assembly Building on April 10, 2009, and rolled out to Launch Pad 39B seven days later to serve as the Launch on Need vehicle for STS-125 in May 2009. When that mission flew without issues, on May 31, workers rolled Endeavour around to Pad 39A to begin preparations for STS-127, planned for launch on June 13. A gaseous hydrogen leak scrubbed this first launch attempt. A similar leak halted the second attempt on June 17 and managers reset the launch date to July 11. Managers scrubbed that launch when 11 lightning strikes struck the launch pad area, requiring a review of Endeavour’s and ground systems. With the seven-member crew aboard Endeavour, weather once again halted the launch attempt on July 12. They tried again the next day, but weather conditions led to a fifth scrubbed launch attempt. The charm came on the sixth try.

Liftoff of space shuttle Endeavour on STS-127 carrying the Exposed Facility for the Japanese Kibo module
Liftoff of space shuttle Endeavour on STS-127 carrying the Exposed Facility for the Japanese Kibo module.

On July 15, 2009, at 6:03 p.m. EDT, space shuttle Endeavour lifted off from KSC’s Launch Pad 39A to begin its 23rd trip into space, beginning the 2JA mission to the space station. Eight and a half minutes later, Endeavour and its crew had reached orbit. This marked Wolf’s fourth time in space, Polansky’s third, Payette’s second, while Hurley, Cassidy, Marshburn, and Kopra enjoyed their first taste of true weightlessness.

NASA astronauts Timothy L. Kopra, left, and Thomas H. Marshburn enjoy the first few minutes of weightlessness after Endeavour reached orbit On the mission’s second day, the Shuttle Remote Manipulator System (SRMS) uses the Orbiter Boom Sensor System to image Endeavour’s Thermal Protection System (TPS) Canadian Space Agency astronaut Julie Payette operates the SRMS during the TPS inspection
Left: NASA astronauts Timothy L. Kopra, left, and Thomas H. Marshburn enjoy the first few minutes of weightlessness after Endeavour reached orbit. Middle: On the mission’s second day, the Shuttle Remote Manipulator System (SRMS) uses the Orbiter Boom Sensor System to image Endeavour’s Thermal Protection System (TPS). Right: Canadian Space Agency astronaut Julie Payette operates the SRMS during the TPS inspection.

After reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts spent five hours on their second day in space conducting a detailed inspection of Endeavour’s nose cap and wing leading edges, with Payette operating the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the Orbiter Boom Sensor System (OBSS).

NASA astronaut Christopher J. Cassidy uses a laser range finder during Endeavour’s rendezvous with the space station Endeavour as seen from the space station during the rendezvous Close up of the Kibo Japanese Experiment Module – the astronauts attached the Exposed Facility at the left end of the module
Left: NASA astronaut Christopher J. Cassidy uses a laser range finder during Endeavour’s rendezvous with the space station. Middle: Endeavour as seen from the space station during the rendezvous. Right: Close up of the Kibo Japanese Experiment Module – the astronauts attached the Exposed Facility at the left end of the module.

On July 17, the 34th anniversary of the Apollo-Soyuz Test Project docking, Polansky assisted by his crewmates brought Endeavour in for a docking with the space station. During the rendezvous, Polansky stopped the approach at 600 feet and completed the Rendezvous Pitch Maneuver so astronauts aboard the station could photograph Endeavour’s underside to look for any damage to the tiles. Shortly after docking, the crews opened the hatches between the two spacecraft and the six-person station crew welcomed the seven-member shuttle crew. Expedition 20 Commander Gennady I. Padalka of Roscosmos stated, “This is a remarkable event for the whole space program.” Polansky responded, “Thirteen is a big number, but we are thrilled to be here.” After exchanging Soyuz seat liners, Kopra joined the Expedition 20 crew and Wakata the STS-127 crew.

Expedition 20, the space station’s first six-person crew and the first, and so far only, time that each of the five space station partners had crew members on board at the same time The first time two Canadians were in space at the same time A medical convention in space – the first time four medical doctors flew in space at the same time
Left: Expedition 20, the space station’s first six-person crew and the first, and so far only, time that each of the five space station partners had crew members on board at the same time. Middle: The first time two Canadians were in space at the same time. Right: A medical convention in space – the first time four medical doctors flew in space at the same time.

STS-127 marked not only the first time that a space shuttle arrived at the station with a six-person crew living aboard, but as it happened, each of the five space station partners had a crew member aboard, a feat not repeated since. The flight also marked the first time that two CSA astronauts worked aboard the space station at the same time. And for the true trivia buffs, the mission marked the first time that four medical doctors worked in space together – an out of this world medical convention!

Transfer of the Exposed Facility from the shuttle to the station Timothy L. Kopra, left, and David A. Wolf work on the station’s truss during the mission’s first spacewalk Douglas G. Hurley, left, and Koichi Wakata of the Japan Aerospace Exploration Agency operate the station’s robotic arm during the first spacewalk
Left: Transfer of the Exposed Facility from the shuttle to the station. Middle: Timothy L. Kopra, left, and David A. Wolf work on the station’s truss during the mission’s first spacewalk. Right: Douglas G. Hurley, left, and Koichi Wakata of the Japan Aerospace Exploration Agency operate the station’s robotic arm during the first spacewalk.

On July 18, the mission’s fourth day, Hurley and Wakata grappled the JEM-EF using the Space Station Remote Manipulator System (SSRMS) or robotic arm, handed it off temporarily to the SRMS operated by Polansky and Payette, moved the station arm into position to grapple it again, and installed it on the end of the Kibo module. Meanwhile, Wolf, with red stripes on his spacesuit, and Kopra, wearing a suit with no stripes, began the mission’s first spacewalk. During the excursion that lasted 5 hours 32 minutes, Wolf and Kopra prepared the JEM for the EF installation and performed other tasks in the shuttle’s payload bay and on the station.

During the second spacewalk, David A. Wolf, left, and Thomas H. Marshburn transfer spare parts to the space station NASA astronaut Douglas G. Hurley, left, and Canadian Space Agency astronaut Julie Payette operate the station’s robotic arm during the second spacewalk
Left: During the second spacewalk, David A. Wolf, left, and Thomas H. Marshburn transfer spare parts to the space station. Right: NASA astronaut Douglas G. Hurley, left, and Canadian Space Agency astronaut Julie Payette operate the station’s robotic arm during the second spacewalk.

The mission’s fifth day involved internal transfers of equipment from the shuttle to the station and the robotic transfer of the Integrated Cargo Carrier (ICC) from the payload bay to the station truss. The ICC carried spare parts that the next day Wolf and Marshburn, wearing dashed red stripes on his spacesuit, transferred to a stowage platform on the station’s exterior during the mission’s second spacewalk, lasting 6 hours and 53 minutes.

An Apollo 11 Moon rock brought to the station to commemorate the 40th anniversary of the first Moon landing Nine of the 13 Expedition 20 and STS-127 crew members share a meal, as NASA astronaut Michael R. Barratt holds the Apollo 11 Moon rock Transfer of the Kibo Experiment Logistics Module from the shuttle to the station
Left: An Apollo 11 Moon rock brought to the station to commemorate the 40th anniversary of the first Moon landing. Middle: Nine of the 13 Expedition 20 and STS-127 crew members share a meal, as NASA astronaut Michael R. Barratt holds the Apollo 11 Moon rock. Right: Transfer of the Kibo Experiment Logistics Module from the shuttle to the station.

The second spacewalk took place on July 20, the 40th anniversary of Apollo 11 landing on the Moon. To commemorate the event, NASA selected a Moon rock returned on that mission and flew it to the space station on STS-119 in March 2009. Expedition 20 astronaut Michael Barratt recorded a video message about the Moon rock, played at a 40th anniversary celebration hosted by the National Air and Space Museum in Washington, D.C., and attended by the Apollo 11 astronauts. The following day, the joint crews continued their work by robotically transferring the JEM Experiment Logistics Module (JEM ELM) and temporarily installing it on the Exposed Facility. Later in the mission, astronauts robotically transferred the three payloads from the ELM to EF.

Christopher J. Cassidy, left, and David A. Wolf during the mission’s third spacewalk Cassidy, left, and Wolf during a battery changeout
Left: Christopher J. Cassidy, left, and David A. Wolf during the mission’s third spacewalk. Right: Cassidy, left, and Wolf during a battery changeout.

Flight Day 8 saw the mission’s third spacewalk, with Wolf making his final excursion, this time accompanied by Cassidy, wearing diagonal red stripes on his suit. Prior to the start of the spacewalk, Hurley and Payette used the station’s arm to relocate the ICC to a different workstation for Wolf and Cassidy to transfer the batteries to the station. As their first task, Wolf and Cassidy prepared the JEM EF for the transfer of the three payload the following day. They managed to transfer two of the four batteries before mission managers decided to shorten the spacewalk due to a slight buildup of carbon dioxide in Cassidy’s suit. The excursion lasted 5 hours and 59 minutes.

Installation of one of the payloads onto the Kibo Exposed Facility (EF) Mark J. Polansky, left, and Koichi Wakata of the Japan Aerospace Exploration Agency, one of the three teams that transferred the EF payloads using Kibo’s robotic arm
Left: Installation of one of the payloads onto the Kibo Exposed Facility (EF). Right: Mark J. Polansky, left, and Koichi Wakata of the Japan Aerospace Exploration Agency, one of the three teams that transferred the EF payloads using Kibo’s robotic arm.

On Flight Day 9, Wakata, assisted by Kopra, inaugurated the operational use of the JEM’s robotic arm by transferring the first payload from the ELM to the EF. Three separate two-person teams transferred each of the three payloads.

Christopher J. Cassidy, left, and Thomas H. Marshburn exchange space station batteries during the mission’s fourth spacewalk Canadian Space Agency astronaut Julie Payette, left, and NASA astronaut Douglas G. Hurley operate the station’s robotic arm during the fourth spacewalk
Left: Christopher J. Cassidy, left, and Thomas H. Marshburn exchange space station batteries during the mission’s fourth spacewalk. Right: Canadian Space Agency astronaut Julie Payette, left, and NASA astronaut Douglas G. Hurley operate the station’s robotic arm during the fourth spacewalk.

On Flight Day 10, Marshburn and Cassidy transferred the remaining four batteries and completed other tasks during the mission’s fourth spacewalk, lasting 7 hours and 12 minutes. Following the battery transfers, Hurley and Payette used the station’s arm to transfer the ICC to Polansky and Hurley operating the shuttle arm, who then stowed it in Endeavour’s payload bay.

The Seattle-Tacoma area The central Florida coast including NASA’s Kennedy Space Center Sicily with Mt. Etna, left, and the “toe” of Italy at right Istanbul straddling Europe, left, and Asia
Left: The Seattle-Tacoma area. Middle left: The central Florida coast including NASA’s Kennedy Space Center. Middle right: Sicily with Mt. Etna, left, and the “toe” of Italy at right. Right: Istanbul straddling Europe, left, and Asia.

With Flight Day 11 given as a crew off duty day, many of the astronauts took part in a favorite activity: looking at and photographing the Earth. They also used the time to catch up on other activities.

Return of the empty Exposed Logistics Module to Endeavour’s payload bay Fisheye view of Christopher J. Cassidy, left, and Thomas H. Marshburn in the U.S. Airlock preparing for the mission’s fifth and final spacewalk Marshburn, left, and Cassidy install cameras on the Kibo Exposed Facility during the fifth and final spacewalk
Left: Return of the empty Exposed Logistics Module to Endeavour’s payload bay. Middle: Fisheye view of Christopher J. Cassidy, left, and Thomas H. Marshburn in the U.S. Airlock preparing for the mission’s fifth and final spacewalk. Right: Marshburn, left, and Cassidy install cameras on the Kibo Exposed Facility during the fifth and final spacewalk.

First thing on Flight Day 12, Payette and Polansky returned the now empty ELM to Endeavour’s payload bay, using the station and shuttle robotic arms. The next day, Marshburn and Cassidy teamed up again for the flight’s fifth and final spacewalk. During the 4-hour 54-minute excursion, they installed a pair of cameras on the Kibo module to help guide future H-II Transfer Vehicle (HTV) cargo spacecraft, the first planned to arrive in September 2009. They also completed a few get ahead tasks. Their excursion brought the total spacewalking time for the mission to 30 hours 30 minutes and marked only the second time that a shuttle mission to the space station completed five spacewalks.

The 13 members of Expedition 20 and STS-127 pose for a final photograph before saying their farewells The crew members exchange farewells, with Koichi Wakata of the Japan Aerospace Exploration Agency, left, appearing a little reluctant to leave after spending 133 days aboard the space station Photograph of the newly installed Exposed Facility on the Kibo Japanese Experiment Module
Left: The 13 members of Expedition 20 and STS-127 pose for a final photograph before saying their farewells. Middle: The crew members exchange farewells, with Koichi Wakata of the Japan Aerospace Exploration Agency, left, appearing a little reluctant to leave after spending 133 days aboard the space station. Right: Photograph of the newly installed Exposed Facility on the Kibo Japanese Experiment Module.

On July 28, the mission’s 14th day, the 13-member joint crew held a brief farewell ceremony, parted company, and closed the hatches between the two spacecraft. With Hurley at the controls, Endeavour undocked from the space station, having spent nearly 11 days as a single spacecraft. Hurley completed a flyaround  of the station, with the astronauts photographing it to document its condition. A final separation burn sent Endeavour on its way.

The International Space Station, with the newly added Exposed Facility and its first payloads, as seen from Endeavour during the departure flyaround. Endeavour casts its shadow on the solar arrays
The International Space Station, with the newly added Exposed Facility and its first payloads, as seen from Endeavour during the departure flyaround. Endeavour casts its shadow on the solar arrays.

The shuttle’s robotic arm grapples the Orbiter Boom Sensor System for the late inspection of Endeavour’s heat shield Deploy of the DRAGONSAT microsatellite Deploy of the ANDE microsatellites
Left: The shuttle’s robotic arm grapples the Orbiter Boom Sensor System for the late inspection of Endeavour’s heat shield. Middle: Deploy of the DRAGONSAT microsatellite. Right: Deploy of the ANDE microsatellites.

The next day, Polansky, Payette, and Hurley used the shuttle’s arm to pick up the OBSS and perform a late inspection of Endeavour’s thermal protection system. On Flight Day 16, the astronauts deployed two satellites. The first, called Dual RF Astrodynamic GPS Orbital Navigation Satellite, or DRAGONSAT, designed by students at the University of Texas, Austin, and Texas A&M University, College Station, consisted of a pair of picosatellites to look at independent rendezvous of spacecraft using GPS. The second, called Atmospheric Neutral Density Experiment-2, or ANDE-2, consisted of a set of Department of Defense microsatellites to look at the density and composition of the atmosphere 200 miles above the Earth. Polansky and Hurley tested Endeavour’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing. The entire crew busied themselves with stowing all unneeded equipment.

Endeavour touches down on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida The welcome home ceremony for the STS-127 crew at Ellington Field in Houston
Left: Endeavour touches down on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Right: The welcome home ceremony for the STS-127 crew at Ellington Field in Houston.

On July 31, the astronauts closed Endeavour’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats, a special recumbent seat for Wakata who had spent the last four months in weightlessness. Polansky fired Endeavour’s two Orbital Maneuvering System engines to bring them out of orbit and heading for a landing half an orbit later. He guided Endeavour to a smooth touchdown at KSC’s Shuttle Landing Facility, capping off a very successful STS-127 mission of 15 days, 16 hours, 45 minutes. They orbited the planet 248 times. Wakata spent 137 days, 15 hours, 4 minutes in space, completing 2,166 orbits of the Earth. Workers at KSC began preparing Endeavour for its next flight, STS-130 in February 2010.

Enjoy the crew narrate a video about the STS-127 mission.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Diana Oglesby’s love for NASA began long before she started working for the agency. A native of Decatur, Texas, Oglesby knew at the age of eight that she would make NASA her future destination. That dream became a reality when Oglesby joined the agency, first as an intern and later as a NASA full-time employee, marking the beginning of a career that would span over two decades.  


      From left, Richard Jones, CCP (Commercial Crew Program) deputy program manager at NASA’s Johnson Space Center in Houston; Steve Stich, program manager for CCP; Dana Hutcherson, CCP deputy program manager at NASA’s Kennedy Space Center in Florida; and Diana Oglesby, director, Strategic Integration and Management Division, Space Operations Mission Directorate, pose with the agency’s SpaceX Crew-9 mission flag near the countdown clock at the NASA News Center at the Kennedy on Tuesday, Sept. 24, 2024.NASA/Cory S Huston Oglesby currently serves as director of the Strategic Integration and Management Division within NASA’s Space Operations Mission Directorate at NASA Headquarters. The division plays a key role in ensuring the effectiveness and efficiency of space operations, providing essential business support such as programmatic integration, strategic planning, information technology and cybersecurity leadership, stakeholder outreach, and administrative services.  

      Before her current role, Oglesby led the business management function for NASA’s Commercial Crew Program at NASA’s Kennedy Space Center in Florida. She had a front-row seat to history during NASA’s SpaceX Demo-2 mission, which successfully launched astronauts to the International Space Station in the first commercially built and operated American rocket and spacecraft, marking a significant milestone in NASA’s space exploration efforts.  

      “It was an honor of a lifetime,” she says, reflecting on her role in this historic achievement.

      Oglesby’s ability to foster teamwork and genuine care for others has been a hallmark of her career, whether serving in NASA’s Commercial Crew Program or now guiding the Strategic Integration and Management Division. 

      While reflecting on her new role as division director, Oglesby is most excited about the people. As someone who thrives on diverse activities and complex challenges, she looks forward to the strategic aspects of her role and the opportunity to lead a dynamic team helping to shape NASA’s future. 
      The future is bright. We are actively building the future now with each choice as part of the agency's strategic planning and transition from current International Space Station operations to the new commercial low Earth orbit destinations.
      Diana Oglesby
      Director, Strategic Integration and Management Division, Space Operations Mission Directorate 
      “The future is bright,” said Oglesby. “We are actively building the future now with each choice as part of the agency’s strategic planning and transition from current International Space Station operations to the new commercial low Earth orbit destinations.” 

      While Oglesby is deeply committed to her work, she also believes in “work-life harmony” rather than a work-life balance, by giving her attention to the sphere of life she is currently in at that moment in time. She remains ever focused on harmonizing between her NASA duties and her life outside of work, including her three children. Oglesby enjoys spending time with her family, baking, crafting, and participating in her local church and various causes to support community needs.   

      Known for her positive energy, passion, and innovation, Oglesby always seeks ways to improve systems and make a difference in whatever project she is tackling. Her attention to detail and problem-solving approach makes her an invaluable leader at NASA. 
      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the heart of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support. 


      To learn more about NASA’s Space Operation Mission Directorate, visit: 
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated Nov 14, 2024 Related Terms
      Space Operations Mission Directorate Strategic Integration and Management Division Explore More
      4 min read Precision Pointing Goes the Distance on NASA Experiment
      Article 2 hours ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 2 weeks ago 3 min read Commercial Services User Group (CSUG)
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Humans In Space
      International Space Station
      Commercial Space
      NASA Directorates
      View the full article
    • By NASA
      Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Southwest Research Institute of San Antonio to build three coronagraphs for the Lagrange 1 Series project, part of NOAA’s Space Weather Next program.
      Once operational, the coronagraphs will provide critical data to NOAA’s Space Weather Prediction Center, which issues forecasts, warnings, and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems.
      This cost-plus-fixed-fee contract is valued at approximately $60 million, and the anticipated period of performance is from this November through January 2034, concluding after launch of the second coronagraph aboard a NOAA spacecraft. The third coronagraph will be delivered as a flight spare.
      This contract award marks a transfer of coronagraph development from the government to the U.S. commercial sector. The contract scope includes design, analysis, development, fabrication, integration, test, verification, and evaluation of the      coronagraphs; launch support; supply and maintenance of ground support equipment; and support of post-launch instrument operations at the NOAA Satellite Operations Facility. The work will take place at Southwest Research Institute’s facility in San Antonio.
      The coronagraphs will observe the density structure of the Sun’s faint outermost atmosphere — the corona — and will detect Earth-directed coronal mass ejections shortly after they erupt, providing the longest possible lead time for geomagnetic storm watches. With this forewarning, public and private organizations affected by space weather can take actions to protect their assets. The coronagraphs will also provide data continuity from the Space Weather follow-on Lagrange 1 mission.
      NASA and NOAA oversee the development, launch, testing and operation of all the satellites in the project. NOAA is the program owner providing the requirements and funding along with managing the program, operations, data products, and dissemination to users. NASA and its commercial partners develop and build the instruments, spacecraft, and provide launch services on behalf of NOAA.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      757-824-2958
      jeremy.l.eggers@nasa.gov
      View the full article
    • By NASA
      NASA The Apollo 12 spacecraft launches from NASA’s Kennedy Space Center in Florida in this image from Nov. 14, 1969, with astronauts Charles Conrad Jr., Richard F. Gordon Jr., and Alan L. Bean aboard. During liftoff, the Saturn V rocket which carried the Apollo capsule was struck twice by lightning.
      On Nov. 19, 1969, the lunar module landed on the Moon. About three hours after landing, Conrad emerged from the lunar module, becoming the third person to step on the Moon. He was followed by Bean.
      Image credit: NASA
      View the full article
    • By NASA
      In November 1969, Apollo 12 astronauts Commander Charles “Pete” Conrad, Command Module Pilot (CMP) Richard F. Gordon, and Lunar Module Pilot (LMP) Alan L. Bean completed the second crewed lunar landing mission. Conrad and Bean achieved a pinpoint landing in the Ocean of Storms within walking distance of the Surveyor 3 spacecraft that landed there in April 1967. While Gordon conducted science from lunar orbit, Conrad and Bean completed two spacewalks on the lunar surface, deploying science instruments, collecting geology samples, and inspecting Surveyor including retrieving several of it parts for study back on Earth. Preparations continued for the next two missions, Apollo 13 and 14, tentatively planned for March and July 1970, respectively.
      Apollo 12

      Left: The crew of Apollo 12 – Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean. Right: The Apollo 12 crew patch.

      Left: The Apollo 12 crew of Charles “Pete” Conrad, center, Richard F. Gordon, and Alan L. Bean, facing them, at the traditional prelaunch breakfast, with their mascot “Irving” behind Conrad. Right: Conrad leads Gordon and Bean onto the astronaut van for the ride to Launch Pad 39A.

      Left: Apollo 12, moments before liftoff into rainy skies. Middle: Liftoff of Apollo 12. Right: Lightning strikes Launch Pad 39A shortly after the Apollo 12 launch.
      Lift off came precisely at 11:22 a.m. EST on Nov. 14, 1969, with the Saturn V launching Apollo 12 into a dark and rainy sky. The flight proceeded normally for the first 36 seconds, with Conrad even commenting that, “It’s a lovely liftoff. It’s not bad at all.” Then everything went haywire. With Apollo 12 at about 6,600 feet altitude and flying through clouds, observers on the ground noted lightning striking the launch pad. Onboard the spacecraft, the astronauts saw a bright flash, followed by many of the spacecraft’s electronics going offline, causing the three power-generating fuel cells to also go offline.
      A second event 52 seconds into the flight caused the spacecraft guidance navigation system to go offline. In the Mission Control Center (MCC) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, a young engineer named John W. Aaron monitored the spacecraft’s systems through the two incidents. He correctly deduced that the spacecraft’s Signal Conditioning Equipment (SCE) must have suffered some unknown upset and went offline. The simple solution to restoring it to normal function involved moving a seldom-used switch from its Normal to its Auxiliary position. Bean recalled the switch’s location on his panel, carried out the requested action, and restored the spacecraft’s systems. Aaron’s quick action saved the launch from two lightning strikes. Once Conrad understood the cause of the excitement, he radioed to Houston, “I think we need to do a little more all-weather testing.”

      Left: View of the Earth shortly after Trans Lunar Injection, with one of the Spacecraft Lunar Module (LM) Adapter panels silhouetted against the clouds. Middle: During Transposition and Docking, the LM Intrepid still attached to the S-IVB third stage. Right: The receding Earth during the translunar coast.
      The rest of the ascent continued without incident and Apollo 12 settled into orbit around the Earth. After verifying that all systems continued functioning properly following the lightning strikes, the astronauts received the call, “The good word is you’re Go for TLI,” the Trans Lunar Injection, the second burn of the third stage engine to send them on their way to the Moon. In his characteristic fashion, Conrad replied, “Hoop-ee-doo! We’re ready! We didn’t expect anything else!” The next major event, the Transposition and Docking (T&D) maneuver, began about 25 minutes later.
      After the separation of the Command and Service Module (CSM) Yankee Clipper from the S-IVB stage, Gordon turned it around and slowly guided it to a docking with the LM Intrepid still attached to the top of the S-IVB. Conrad commented during the maneuver, “I got an awful pretty looking Intrepid sitting out the window here, gang. We’ll go get her.” After the docking, Gordon backed away from the third stage, extracting the LM in the process, and completing the T&D maneuver. For the next three days, the astronauts continued their journey toward the Moon. Along the way, they inspected Intrepid to verify it came to no harm from the lightning strikes, conducted one midcourse maneuver to ensure their accurate arrival near the Moon, and provided two TV broadcasts showing views of Earth and their spacecraft.

      Left: Image from lunar orbit of the Fra Mauro highlands, the proposed landing site for Apollo 13 (inside white circle). Middle: The Lunar Module Intrepid as seen from the Command Module Yankee Clipper shortly after undocking. Right: Yankee Clipper as seen from Intrepid.
      The Apollo 12 astronauts awoke for their fourth mission day to find themselves within the Moon’s gravitational sphere of influence. Apollo 12 sailed behind the Moon, losing contact with Earth. Thirteen minutes later, the astronauts fired the Service Propulsion System (SPS) engine for the Lunar Orbit Insertion burn, placing them into an elliptical orbit around the Moon.

      Left: Still from 16 mm film looking out Alan L. Bean’s window at about 3,500 feet during the descent, showing the location of Surveyor Crater, the Apollo 12 landing site. Right: Illustration of the Apollo 12 landing site and the two surface traverses.
      During the third lunar orbit, the crew fired the SPS engine again to circularize their orbit. The next day, Conrad and Bean donned their spacesuits and reactivated the LM for the separation and landing, extending Intrepid’s landing legs. After undocking and while behind the Moon, Conrad and Bean fired the LM’s Descent Propulsion System engine to lower Intrepid’s orbit. Exactly half a revolution later, Intrepid began the burn to drop it from orbit all the way to the landing in the Ocean of Storms. With Bean providing updates from the guidance computer, Conrad skillfully piloted Intrepid to a smooth landing just northwest of Surveyor Crater, and as they learned later, only 538 feet from Surveyor 3. Without much fanfare, Conrad and Bean completed the postlanding checklist, although Bean allowed himself a little exuberant “Good landing, Pete!  Outstanding, man!  Beautiful!” Conrad radioed to Mission Control, “Okay, we’re in hot shape, Houston. We’re in real good shape!” They had a chance to look out the windows, with Bean exclaiming, “Holy cran, it’s beautiful out here!” Conrad replied, “It sure is; it’s something else,” later adding, “Man! I can’t wait to get outside!”

      Left: Charles “Pete” Conrad on the Lunar Module ladder about to descend to the surface. Middle: Alan L. Bean takes his first steps on the Moon. Right: Conrad working on the central station of the Apollo Lunar Surface Experiment Package, with its various instruments deployed around it.
      Conrad and Bean donned their Portable Life Support System (PLSS) backpacks that provided oxygen and communications while on the surface and donned their helmets and gloves. They depressurized the LM, opened the hatch, and Conrad backed out onto the porch, slowly climbing down the ladder. Halfway down, he pulled a lanyard that deployed a color TV camera on the side of the LM’s descent stage, providing a view of him on the LM ladder. After he jumped from the bottom rung onto the footpad, Conrad exclaimed, “Whoopie! Man, that may have been a small one for Neil, but that’s a long one for me,” in reference to Armstrong’s famous words as he took humanity’s first step on the Moon and Conrad’s shorter stature. As he stepped off the pad, he remarked, “Oooh is that soft and queasy.” After taking a few tentative steps, Conrad informed everyone that he could see Surveyor 3 sitting inside the crater. He collected the contingency sample – in case they had to leave quickly due to an emergency, geologists would have one small sample from the Ocean of Storms.
      Bean joined Conrad on the surface, both acclimating rapidly to working in one-sixth g. Conrad set up the S-band antenna for communications with Earth, but while setting up the TV camera, Bean accidentally pointed it at the Sun and damaged the vidicon tube, ending the live TV transmission from the Moon. Bean deployed the Solar Wind Collector (SWC), a Swiss experiment that collected particles from the solar wind, and then he and Conrad set up the American flag. They began the primary task of the first spacewalk – setting up the various instruments of the Apollo Lunar Surface Experiment Package (ALSEP). Conrad and Bean carried them to their deployment location about 430 feet to the northwest of Intrepid. They explored the area around the ALSEP site, visiting craters of interest and collecting rock and soil samples before heading back toward Intrepid. They remarked on several occasions how the lunar dust clung to their suits and equipment, and as Conrad quipped, “We’re going to be a couple of dirty boogers.” First Bean then Conrad climbed up the ladder and once inside Intrepid they closed the hatch and repressurized the cabin. Their first spacewalk lasted 3 hours and 56 minutes. They set up hammocks in Intrepid and went to sleep.

      Left and middle: Charles “Pete” Conrad and Alan L. Bean with the Surveyor 3 spacecraft, with their Lunar Module (LM) Intrepid visible in the background. Right: View from inside the LM through Bean’s window following the second spacewalk.
      After a short night’s rest, Conrad and Bean prepared for their second spacewalk. As before, first Conrad and then Bean descended the ladder to the surface. Conrad walked to the ALSEP to inspect one of the instruments, the seismometer they deployed during the first spacewalk picking up his footsteps. Both then headed west from Intrepid, where Conrad rolled two rocks down into a crater, the vibrations captured by the seismometer. They collected several documented samples, often preceded with expressions like “Oooooh!” and “That’s a beauty!” and dug a trench to expose subsurface material, collecting a sample from about eight inches deep.
      They set off toward the main objective of this spacewalk – Surveyor 3, resting on the inner slope of 600-foot-wide Surveyor Crater. Entering the crater from the south rim, they walked counterclockwise while descending down the slope until they reached the robotic spacecraft. After taking “tourist” pictures with Surveyor, the two photographed the craft from all angles, noting that the trenches left by its scoop and the marks from its footpads when it bounced after landing looked as fresh as when Surveyor photographed them in 1967. Using cutters, Conrad removed the craft’s camera, scoop, and other parts for return to Earth, where engineers and scientists examined them for the effects of 31 months in the harsh lunar environment. The work at Surveyor completed, the two returned to Intrepid. Bean retrieved the SWC experiment, overcoming difficulties in rolling it back up. Compared with a short 77-minute exposure during Apollo 11, this SWC collected samples of the solar wind for nearly 19 hours. With everything packed up, Bean followed by Conrad headed up the ladder. After closing the hatch, they repressurized Intrepid, ending the 3-hour 49-minute excursion.

      The Apollo 12 landing site photographed by the Lunar Reconnaissance Orbiter in 2011, the inset showing the Lunar Module Intrepid’s descent stage.

      Left: A still from 16 mm film recorded aboard Yankee Clipper of Intrepid’s approach just prior to docking. Middle: The Moon shortly after Trans Earth Injection. Right: A receding Moon during the trans Earth coast.
      After returning inside Intrepid, Conrad and Bean took photographs out the windows, showing the signs of their visit – numerous footprints, the American flag, the S-band antenna, and in the distance, the ALSEP station. As Gordon in Yankee Clipper flew overhead on his 30th lunar revolution, Intrepid’s Ascent Stage engine ignited, and Conrad and Bean lifted off from the Moon after 31 hours and 31 minutes on the surface. Conrad exclaimed, “Liftoff! And away we go!” with Bean adding, “Boy, did it fire!” Intrepid and Yankee Clipper executed a series of maneuvers that led to their docking about three and a half hours after liftoff from the Moon. Their independent flights had lasted 37 hours and 42 minutes. The three astronauts opened the hatches between the two spacecraft and began transfers from Intrepid into Yankee Clipper, including the lunar samples, cameras, and film. Gordon transferred some unneeded items to be jettisoned in Intrepid. The transfers completed, they closed the hatches between the spacecraft and jettisoned the LM. To calibrate the seismometer left on the Moon, controllers sent a command to Intrepid to fire its thrusters to drop it out of orbit and send it crashing onto the surface. The seismometer recorded signals for nearly one hour after the impact.

      Left: Recording from the Apollo 12 seismometer of the intentional crash of Intrepid’s ascent stage. Right: LRO image of the impact area and debris field of Intrepid’s ascent stage, east of the Fra Mauro B crater.
      The primary activity for their remaining time around the Moon consisted of photographing potential landing sites for future Apollo missions, such as the Fra Mauro highlands and the Descartes region. On their 45th revolution, they went around to the Moon’s back side for the last time and they fired the SPS for the Trans Earth Injection burn. Apollo 12 left lunar orbit after 3 days 17 hours and 2 minutes. Conrad radioed to Mission Control, “Hello, Houston. Apollo 12’s en route home.”
      During the three-day return trip to Earth, the astronauts conducted a midcourse maneuver to refine their trajectory, answered questions from geologists and other scientists, and held a press conference at the end of which they held up a homemade sign to the camera that read, “Yankee Clipper sailed with Intrepid to the Sea of Storms, Moon, November 14, 1969,” signed by all three crew members. With the Sun and the Earth nearly aligned, the astronauts could only see a very thin crescent of their home planet, prompting Conrad to comment, “Houston, we just got our first glimpse of you this morning, and there’s not very much of you out there.” 

      Left: The Moon continues to shrink in size as Apollo 12 heads for home. Middle: The Earth appearing as a thin crescent. Right: The Apollo 12 astronauts observed a total solar eclipse as they passed into Earth’s shadow shortly before reentry.

      Left: The Apollo 12 Command Module Yankee Clipper descends on its three main parachutes seconds before splashdown. Middle: A recovery helicopter hovers over Yankee Clipper in the Stable II, or apex down, position, seconds after splashdown. Right: Image taken by a recovery diver of the decontamination officer assisting Alan L. Bean out of Yankee Clipper, with Richard F. Gordon, left, and Charles “Pete” Conrad already aboard the life raft.
      Shortly before reentry, orbital mechanics had a show in store for the astronauts – their trajectory passed through the Earth’s shadow, treating them to a total solar eclipse. Gordon radioed Mission Control, “We’re getting a spectacular view at eclipse,” and Bean added that it was a “fantastic sight.” The excitement of the eclipse over, the astronauts prepared the cabin for reentry. The CM separated from the Service Module and rotated to point its heatshield into the direction of flight. At 400,000 feet, Yankee Clipper now travelling at 24,625 miles per hour encountered the first tendrils of Earth’s atmosphere. About four minutes of radio blackout followed as ionized gases created by the heat of reentry surrounded the spacecraft. As Apollo 12 came out of the blackout, the prime recovery ship U.S.S. Hornet established radar contact with the spacecraft at a distance of 119 miles. At about 24,000 feet, the spacecraft jettisoned its apex cover, then deployed its two drogue parachutes to slow and stabilize the capsule. At 10,000 feet, the three main orange and white parachutes deployed, with Conrad reporting, “Three gorgeous beautiful chutes.” Precisely 244 hours and 36 minutes after lifting off from Florida, Apollo 12 splashed down in the Pacific Ocean less than four miles from Hornet, bringing the second lunar landing mission to a successful conclusion.

      Left: Apollo 12 astronauts Richard F. Gordon, left, Alan L. Bean, and Charles “Pete” Conrad aboard the recovery helicopter. Middle: Conrad, front, Gordon, and Bean walk from the helicopter to the Mobile Quarantine Facility (MQF). Right: Admiral John S. McCain addresses the Apollo 12 astronauts in the MQF.
      The capsule assumed the apex down Stable 2 position in the water, but in less than five minutes three self-inflating balloons righted the spacecraft into the Stable 1 upright orientation. Five minutes later, a helicopter dropped the first three recovery team swimmers into the water, tasked with securing a flotation collar and rafts to the spacecraft. Decontamination officer Ernest “Ernie” L. Jahncke next dropped into the water and once the crew opened the hatch, he handed them fresh flight suits and respirators. A few minutes later, the crew reopened the hatch, and first Conrad, then Gordon, and finally Bean climbed aboard a life raft where Jahncke used a disinfectant solution to decontaminate the astronauts and the spacecraft. The recovery helicopter lowered a Billy Pugh net to haul the astronauts up from the raft, first Gordon, then Bean, and finally Conrad. Aboard the helicopter, NASA flight surgeon Dr. Clarence A. Jernigan gave each astronaut a brief physical examination during the short flight back to Hornet, declaring all three healthy.
      After it landed on Hornet’s deck, sailors lowered the helicopter to the hangar deck, where Conrad, Gordon, and Bean, followed by Dr. Jernigan, walked the few steps to the Mobile Quarantine Facility (MQF) where NASA engineer Brock R. “Randy” Stone awaited them. He sealed the door of the MQF exactly one hour after splashdown. The five men spent the next five days together in the MQF until they arrived at the Lunar Receiving Laboratory (LRL) at MSC. The astronauts took congratulatory phone calls from President Richard M. Nixon, who field-promoted all three from U.S. Navy Commanders to Captains, and from NASA Administrator Thomas O. Paine. After the astronauts talked briefly with their families, Commander-in-Chief of Pacific Naval Forces Admiral John S. McCain formally welcomed them back to Earth, followed by brief speeches by Rear Admiral Donald C. Davis, Commander of Recovery Forces, and Capt. Carl J. Seiberlich, Hornet’s skipper.

      Left: Apollo 12 Command Module Yankee Clipper in the water with U.S.S. Hornet approaching as a rescue helicopter circles. Middle: Recovery team members lift Yankee Clipper out of the water. Right: Sailors haul Yankee Clipper aboard the Hornet.
      Within an hour after the astronauts arrived on board Hornet, the recovery team hauled Yankee Clipper out of the water and towed it below to the hangar deck next to the MQF. As Hornet set sail for Pearl Harbor, arriving there four days later, workers attached a hermetically sealed plastic tunnel between the MQF and Yankee Clipper, allowing Stone to leave the MQF and open the hatch to the capsule without breaking the biological barrier. He retrieved the two rock boxes containing the lunar samples, the bags containing the Surveyor parts, film cassettes, and mission logs from the capsule. He brought them to the MQF where he sealed them in plastic bags and transferred them to the outside through a transfer lock that included a decontamination wash.
      Outside the MQF, NASA engineers placed these items into transport containers and loaded them aboard two separate aircraft. The first aircraft carrying one rock box and a second package containing film departed Hornet within nine hours of the recovery, flying to Pago Pago, American Samoa. From there the two containers were placed aboard a cargo aircraft and flown directly to Ellington Air Force Base (AFB) near MSC in Houston, arriving there late in the afternoon of Nov. 25. A second aircraft departed Hornet 14 hours after the first and included the second rock box, additional film as well as the astronaut medical samples. It flew to Pago Pago where workers transferred the containers to another cargo plane that flew them to Houston. Less than 48 hours after splashdown, scientists in the LRL were examining the lunar samples and processing the film.

      Left: Technicians carry the first box of Apollo 12 lunar samples from the cargo plane after its arrival at Ellington Air Force Base in Houston. Middle: Technicians log in the first set of Apollo 12 lunar samples and film at the Lunar Receiving Laboratory’s (LRL) loading dock. Right: A technician weighs the first Apollo 12 Sample Return Container in the LRL.

      Left: Technicians place the first Apollo 12 Sample Return Container (SRC) inside a glovebox at the Lunar Receiving Laboratory. Middle: The first Apollo 12 SRC inside a glovebox. Right: Scientists get the first glimpse of the Moon rocks inside the first SRC.

      Left: Apollo 12 astronauts Richard F. Gordon, second from left, Alan L. Bean and Charles “Pete” Conrad prepare their mission report inside the MQF. Middle: Workers at Pearl Harbor in Honolulu offload the Mobile Quarantine Facility (MQF) from Hornet with the Apollo 12 crew inside. Right: Workers at Ellington Air Force Base in Houston offload the MQF with the astronauts inside.
      Meanwhile, in the Pacific Ocean, Hornet sailed for Pearl Harbor, Hawaii, with the astronauts inside the MQF to maintain the strict back-contamination protocols. They also celebrated Thanksgiving on Nov. 27. Dr. Jernigan conducted regular medical examinations of the astronauts, who showed no ill effects from their ten-day spaceflight or any signs of infection by any lunar microorganisms. The crew members availed themselves of one amenity aboard the MQF that was a novelty at the time – a microwave oven for meal preparation.
      On Nov. 28, Hornet arrived at Pearl Harbor. Workers lifted the MQF with the astronauts inside onto a flat-bed trailer. After a brief welcoming ceremony including traditional Hawaiian flower leis, ukulele music, and hula dancers, they drove the MQF to nearby Hickam AFB, where Air Force personnel loaded it onto a cargo aircraft. After an eight-hour flight, the aircraft arrived at Ellington on the morning of Nov. 29, where the MQF was offloaded in front of a waiting crowd of well-wishers including MSC Director Robert R. Gilruth and Apollo 11 astronaut Neil A. Armstrong. The astronauts’ wives and children were on hand to welcome them home to Houston. Workers placed the MQF on a flat-bed truck and drove it to the LRL. Less than two hours after landing in Houston the astronauts arrived inside the Crew Reception Area (CRA) where they spent the next 11 days. During their time in quarantine, they completed many of the postflight debriefs and examined the lunar rocks as well as the parts of Surveyor 3 such as its camera that they returned from the Ocean of Storms.

      Left: Robert R. Gilruth, director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, welcomes the Apollo 12 astronauts home. Middle: The Apollo 12 astronauts’ wives Barbara Gordon, left, Jane Conrad, and Sue Bean and their children welcome their husbands home. Right: Apollo 11 astronaut Neil A. Armstrong greets the Apollo 12 crew upon their return to Ellington.

      Left: Workers drive the Apollo 12 astronauts inside the Mobile Quarantine Facility (MQF) from Ellington Air Force Base to the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Middle: The MQF approaches MSC. Right: The MQF docked the MSC’s Building 37, the Lunar Receiving Laboratory.

      Left: Charles “Pete” Conrad examines some of the Moon rocks he and Alan L. Bean returned from the Moon. Middle: Conrad and Richard F. Gordon place the rocks samples back in the collection bags. Right: Conrad examines the camera from Surveyor 3 that he and Bean returned from the Moon.

      Left: The Apollo 12 Command Module Yankee Clipper arrives at the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Yankee Clipper temporarily parked outside the LRL before workers roll it inside. Right: In the LRL, Richard F. Gordon writes on Yankee Clipper that served as his home for 10 days.
      After the astronauts departed Hornet in Pearl Harbor, workers lifted Yankee Clipper from the carrier’s flight deck to the dock and drove it to Hickam AFB where technicians safed the vehicle by draining its toxic fuels. To preserve back-contamination protocols, Yankee Clipper’s hatch remained sealed. On Dec. 1, workers loaded Yankee Clipper onto a cargo aircraft at Hickam AFB. It arrived at Ellington AFB the next day and workers trucked it to the LRL, then towed it inside the spacecraft room of the CRA. The Apollo 12 astronauts signed their names on the capsule below the same words they held up during their inflight news conference – “Yankee Clipper Sailed with Intrepid to The Ocean of Storms, Moon, November 14, 1969.”

      Left: The Apollo 12 Command Module Yankee Clipper on display at the Virginia Air and Space Center in Hampton. Middle: A technician examines the Surveyor 3 camera returned by Apollo 12. Right: The Surveyor 3 camera on display at the Smithsonian Institution’s National Air and Space Museum in Washington, D.C.
      Visitors to the Virginia Air and Space Center in Hampton can view the Apollo 12 CM Yankee Clipper on display. Surveyor’s camera is on display at the Smithsonian Institution’s National Air and Space Museum in Washington, D.C.
      Apollo 13

      Left: Apollo 13 astronaut James A. Lovell preparing to test his spacesuit in a vacuum chamber in the Space Environment Simulation Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Workers at NASA’s Kennedy Space Center in Florida prepare the Apollo 13 Command and Service Module. Right: Lovell during the geology field trip to Kilbourne Hills, New Mexico.
      The next Moon landing mission, Apollo 13, planned to launch on March 12, 1970, and visit the Fra Mauro highlands region of the Moon. With the mission’s increased emphasis on science, geology training for the Apollo 13 prime crew of Commander James A. Lovell, CMP Thomas K. “Ken” Mattingly, and LMP Fred W. Haise, and their backups John W. Young, Jack L. Swigert, and Charles M. Duke, took on greater importance. Lovell, Haise, Young, and Duke, accompanied by several geologists, traveled to Kilbourne Hole, New Mexico, for a one-day geology field trip on Nov. 11. The area’s volcanic origins served as appropriate training for their planned landing site, then believed to be a result of volcanic activity. The astronauts practiced deploying their ALSEP set of instruments, including during suited tests in a vacuum chamber in MSC’s Space Environment Simulation Laboratory. At KSC, workers in the Manned Spacecraft Operations Building (MSOB) continued preparing both the CSM and the LM for Apollo 13 prior to stacking with the Saturn V rocket in December.
      Apollo 14

      Left: The Apollo 14 Command and Service Modules arrive at NASA’s Kennedy Space Center (KSC) for preflight processing. Middle: The Apollo 14 Lunar Module (LM) descent stage arrives at KSC. Right: The Apollo 14 LM ascent stage arrives at KSC.
      Spacecraft components for Apollo 14, then planned for launch around July 1970, arrived at KSC in November 1969. The CM and SM arrived on Nov. 19 and workers in the MSOB mated the two components five days later. The two stages of the LM arrived in the MSOB on Nov. 24.
      With special thanks to Robert B. Fish for his expertise on U.S.S. Hornet recovery operations.
      To be continued …
      News from around the world in November 1969:
      November 10 – Sesame Street premieres on PBS.
      November 12 – Five Americans and one New Zealander became the first women to visit the South Pole.
      November 15 – Wendy’s Hamburgers opens in Columbus, Ohio.
      November 20 – Brazilian soccer star Pelé scores his 1,000th goal.
      November 22 – Isolation of a single gene announced by scientists at Harvard University.
      Explore More
      12 min read 40 Years Ago: STS-51A – “The Ace Repo Company”
      Article 6 days ago 1 min read Oral History with Jon A. McBride, 1943 – 2024
      Article 7 days ago 9 min read 30 Years Ago: STS-66, the ATLAS-3 Mission to Study the Earth’s Atmosphere
      Article 1 week ago View the full article
    • By NASA
      5 Min Read Wearable Tech for Space Station Research
      A wearable monitoring device is visible on the left wrist of NASA astronaut Jeanette Epps. Credits: NASA Science in Space Nov 2024
      Many of us wear devices that count our steps, measure our heart rate, track sleep patterns, and more. This information can help us make healthy decisions – research shows the devices encourage people to move more, for example – and could flag possible problems, such as an irregular heartbeat.
      Wearable monitors also have become common tools for research on human health, including studies on the International Space Station. Astronauts have worn special watches, headbands, vests, and other devices to help scientists examine sleep quality, effectiveness of exercise, heart health, and more.
      Warm to the core
      Spaceflight can affect body temperature regulation and daily rhythms due to factors such as the absence of convection (a natural process that transfers heat away from the body) and changes in the cardiovascular and metabolic systems.
      A current investigation from ESA (European Space Agency), Thermo-Mini or T-Mini examines how the body regulates its core temperature during spaceflight. The study uses a non-invasive headband monitor that astronauts can wear for hours at a time. Data from the monitor allow researchers to determine the effect on body temperature from environmental and physiological factors such as room temperature and humidity, time of day, and physical stress. The same type of sensor already is used on Earth for research in clinical environments, such as improving incubators, and studies of how hotter environments affect human health.
      Thermolab, an earlier ESA investigation, examined thermoregulatory and cardiovascular adaptations during rest and exercise in microgravity. Researchers found that core body temperature rises higher and faster during exercise in space than on Earth and that the increase was sustained during rest, a phenomenon that could affect the health of crew members on long-term spaceflight. The finding also raises questions about the thermoregulatory set point humans are assumed to have as well as our ability to adapt to climate change on Earth.
      NASA astronaut Nick Hague wears the T-mini device while exercising.NASA To sleep, perchance to dream
      Spaceflight is known to disrupt sleep-wake patterns. Actiwatch Spectrum, a device worn on the wrist, contains an accelerometer to measure motion and photodetectors to monitor ambient lighting. It is an upgrade of previous technology used on the space station to monitor the length and quality of crew member sleep. Data from earlier missions show that crew members slept significantly less during spaceflight than before and after. The Actiwatch Sleep-Long investigation used an earlier version of the device to examine how ambient light affects the sleep-wake cycle and found an association between sleep deficiency and changes during spaceflight in circadian patterns, or the body’s response to a normal 24-hour light and dark cycle. Follow up studies are testing lighting systems to address these effects and help astronauts maintain healthy circadian rhythms.
      NASA astronaut Sunita Williams wears an Actiwatch as she conducts research.NASA Wearable Monitoring tested a lightweight vest with embedded sensors to monitor heart rate and breathing patterns during sleep and help determine whether changes in heart activity affect sleep quality. The technology offers a significant advantage by monitoring heart activity without waking the test subject and could help patients on Earth with sleep disorders. Researchers reported positive performance and good quality of recorded signals, suggesting that the vest can contribute to comprehensive monitoring of individual health on future spaceflight and in some settings on Earth as well.
      These and other studies support development of countermeasures to improve sleep for crew members, helping to maintain alertness and lessen fatigue during missions.
      (Not) waiting to exhale
      Humans exhale carbon dioxide and too much of it can build up in closed environments, causing headaches, dizziness, and other symptoms. Spacecraft have systems to remove this substance from cabin air, but pockets of carbon dioxide can form and be difficult to detect and remove. Personal CO2 Monitor tested specially designed sensors attached to clothing to monitor the wearer’s immediate surroundings. Researchers reported that the devices functioned adequately as either crew-worn or static monitors, an important step toward using them to determine how carbon dioxide behaves in enclosed systems like spacecraft.
      One of the wearable carbon dioxide monitors clipped to the wall near a crew sleeping compartment. Radiation in real time
      EVARM, an investigation from CSA (Canadian Space Agency), used small wireless dosimeters carried in a pocket to measure radiation exposure during spacewalks. The data showed that this method is a feasible way to measure radiation exposure, which could help focus routine dosage monitoring where it is most needed. Any shielding and countermeasures developed also could help protect people who work in high-radiation areas on Earth.
      ESA’s Active Dosimeter tested a radiation dosimeter worn by crew members to measure changes in their exposure over time based on the space station’s orbit and altitude, the solar cycle, and solar flares. Measurements from the device allowed researchers to analyze radiation dosage across an entire space mission.
      ESA astronaut Thomas Pesquet holds one of the mobile units for the Active Dosimeter study.NASA The Active Dosimeter also was among the instruments used to measure radiation on NASA’s Orion spacecraft during its 25.5-day uncrewed Artemis I mission around the Moon and back in 2022.
      Another device tested on the space station and then on Artemis I, AstroRad Vest is designed to protect astronauts from solar particle events. Researchers used these and other radiation measuring devices to show that Orion’s design can protect its crew from potentially hazardous radiation levels during lunar missions.
      The International Space Station serves as an important testbed for these technologies and many others being developed for future missions to the Moon and beyond.
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Humans In Space
      Space Station Technology Demonstration
      Space Station Research and Technology
      Station Science 101: Human Research
      View the full article
  • Check out these Videos

×
×
  • Create New...