Jump to content

Sols 4241–4242: We Can’t Go Around It…We’ve Got To Go Through It!


NASA

Recommended Posts

  • Publishers

2 min read

Sols 4241–4242: We Can’t Go Around It…We’ve Got To Go Through It!

Grayscale photo shows an extreme wide-angle view of the Martian landscape, with the horizon forming a semicircle across the upper third of the frame. Light-colored rocks – almost white – are exposed and scattered across the medium gray, pebbly soil just in front of the rover, filling the center of the frame, while smooth, gentle hills mark the horizon beyond.
This image was taken by the Front Hazard Avoidance Camera (Front Hazcam) aboard NASA’s Mars rover Curiosity on Sol 4237 – Martian day 4,237 of the Mars Science Laboratory mission – on July 7, 2024 at 14:46:38 UTC.

Earth planning date: Wednesday, July 10, 2024

Curiosity is currently trekking across Gediz Vallis channel because, as my nephew’s favorite book says, if we can’t go around it… we’ve got to go through it! Recently we’ve been parked for a while on the channel to drill “Mammoth Lakes,” (https://science.nasa.gov/blogs/sols-4222-4224-a-particularly-prickly-power-puzzle/) and are now on the move once again exploring the rubbly rocks. Today the science team planned two sols of activity for Curiosity as we venture on through and across Gediz Vallis channel.

On the first sol we undertake nearly two hours of planned science. This includes Navcam deck monitoring and a Mastcam tau, to measure dust in the atmosphere as part of our atmospheric and environmental activities, alongside some geology-focused observations. MAHLI is taking a close up image of “Donohue Pass” that we targeted with ChemCam LIBS and Mastcam imagery in the previous plan (https://science.nasa.gov/blogs/sols-4239-4240-vuggin-out/). ChemCam will take a LIBS on a rock named “Negit Island” that caught the team’s eye with a lighter base and a darker upper section. ChemCam will also take two RMIs of Gediz Vallis, one to document the wall of Gediz Vallis channel that we can see up ahead of us, and one looking at the rocks that sit within the channel. Mastcam is also taking a look at the wall of Gediz Vallis, as well as continuing a mega-mosaic started in the last plan that took 54 images of “Stubblefield Canyon.” Today we planned another 48 images to document the rest of this area named “Echo Ridge.”

ChemCam will take a passive observation of an interesting rubbly target in this region called “Wishbone Lake,” prior to a five-meter drive (about 16 feet) over to this feature. Once we have arrived, Curiosity will take some post-drive Navcam imaging and a MARDI image of our left-front wheel. After a well-deserved sleep, on the second sol of this plan Curiosity will automatically choose a LIBS target in our new workspace, before taking a dust-devil and suprahorizon movie to round off this plan.

Written by Emma Harris, Graduate Student at Natural History Museum, London

Share

Details

Last Updated
Jul 12, 2024

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/JPL-Caltech This Oct. 4, 2017, illustration shows a hypothetical uneven ring of dust orbiting KIC 8462852, also known as Boyajian’s Star or Tabby’s Star. The star has experienced unusual dips in brightness over a matter of days, as well as much subtler but longer-term dimming trends. Scientists proposed several explanations for this unexpected behavior, ranging from Tabby’s Star swallowing a planet to alien “megastructures” harvesting the star’s energy. However, a study using NASA’s Spitzer and Swift missions as well as the Belgian AstroLAB IRIS observatory suggests that the cause of the dimming over long periods is likely an uneven dust cloud moving around the star.
      Learn more about this enigmatic star, named after Tabetha Boyajian, the Yale University postdoc who discovered it with the help of citizen scientists.
      Image credit: NASA/JPL-Caltech
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4368-4369: The Colors of Fall – and Mars
      This image shows all the textures — no color in ChemCam remote-imager images, though — that the Martian terrain has to offer. This image was taken by Chemistry & Camera (ChemCam) aboard NASA’s Mars rover Curiosity on Nov. 18, 2024 — sol 4367, or Martian day 4,367 of the Mars Science Laboratory mission — at 02:55:09 UTC. NASA/JPL-Caltech/LANL Earth planning date: Monday, Nov. 18, 2024
      I am in the U.K., where we are approaching the time when trees are just branches and twigs. One tree that still has its full foliage is my little quince tree in my front garden. Its leaves have turned reddish-brown with a hint of orange, fairly dark by now, and when I passed it this afternoon on my way to my Mars operations shift, I thought that these leaves have exactly the colors of Mars! And sure enough, today’s workspace is full of bedrock blocks in the beautiful reddish-brown that we love from Mars. But like that tree, it’s not just one color, but many different versions and patterns, all of many reddish-brown and yellowish-brown colors.
      The tree theme continues into the naming of our targets today, with ChemCam observing the target “Big Oak Flat,” which is a flat piece of bedrock with a slightly more gray hue to it. “Calaveras,” in contrast, looks a lot more like my little tree, as it is more reddish and less gray. It’s also a bedrock target, and APXS and MAHLI are observing this target, too. APXS has another bedrock target, called “Murphys” on one of the many bedrock pieces around. MAHLI is of course documenting Murphys, too. Let’s just hope that this target name doesn’t get any additions to it but instead returns perfect data from Mars!
      ChemCam is taking several long-distance remote micro-imager images — one on the Gediz Vallis Ridge, and one on target “Mono Lake,” which is also looking at the many, many different textures and stones in our surroundings. The more rocks, the more excited a team of geologists gets! So, we are surely using every opportunity to take images here!
      Talking about images… Mastcam is taking documentation images on the Big Oak Flat and Calaveras targets, and a target simply called “trough.” In addition, there are mosaics on “Basket Dome” and “Chilkoot,” amounting to quite a few images of this diverse and interesting terrain! More images will be taken by the navigation cameras for the next drive — and also our Hazcam. We rarely talk about the Hazcams, but they are vital to our mission! They look out from just under the rover belly, forward and backward, and have the important task to keep our rover safe. The forward-looking one is also great for planning purposes, to know where the arm can reach with APXS, MAHLI, and the drill. To me, it’s also one of the most striking perspectives, and shows the grandeur of the landscape so well. If you want to see what I am talking about, have a look at “A Day on Mars” from January of this year.
      Of course, we have atmospheric measurements in the plan, too. The REMS sensor is measuring temperature and wind throughout the plan, and Curiosity will be taking observations to search for dust devils, and look at the opacity of the atmosphere. Add DAN to the plan, and it is once again a busy day for Curiosity on the beautifully red and brown Mars. And — hot off the press — all about another color on Mars: yellowish-white!
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Nov 20, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)


      Article


      2 days ago
      2 min read Sols 4362-4363: Plates and Polygons


      Article


      1 week ago
      3 min read Peculiar Pale Pebbles
      During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      Video: 00:04:30 Explore the immense power of water as ESA’s Mars Express takes us on a flight over curving channels, streamlined islands and muddled ‘chaotic terrain’ on Mars, soaking up rover landing sites along the way.
      This beautiful flight around the Oxia Palus region of Mars covers a total area of approximately 890 000 km2, more than twice the size of Germany. Central to the tour is one of Mars’s largest outflow channels, Ares Vallis. It stretches for more than 1700 km2 and cascades down from the planet’s southern highlands to enter the lower-lying plains of Chryse Planitia.
      Billions of years ago, water surged through Ares Vallis, neighbouring Tiu Vallis, and numerous other smaller channels, creating many of the features observed in this region today.
      Enjoy the flight!
      After enjoying a spectacular global view of Mars we focus in on the area marked by the white rectangle. Our flight starts over the landing site of NASA’s Pathfinder mission, whose Sojourner rover explored the floodplains of Ares Vallis for 12 weeks in 1997. 
      Continuing to the south, we pass over two large craters named Masursky and Sagan. The partially eroded crater rim of Masursky in particular suggests that water once flowed through it, from nearby Tiu Vallis.
      The Masurky Crater is filled with jumbled blocks, and you can see many more as we turn north to Hydaspis Chaos. This ‘chaotic terrain’ is typical of regions influenced by massive outflow channels. Its distinctive muddled appearance is thought to arise when subsurface water is suddenly released from underground to the surface. The resulting loss of support from below causes the surface to slump and break into blocks of various sizes and shapes.
      Just beyond this chaotic array of blocks is Galilaei crater, which has a highly eroded rim and a gorge carved between the crater and neighbouring channel. It is likely that the crater once contained a lake, which flooded out into the surroundings. Continuing on, we see streamlined islands and terraced river banks, the teardrop-shaped island ‘tails’ pointing in the downstream direction of the water flow at the time.
      Crossing over Ares Vallis again, the flight brings us to the smoother terrain of Oxia Planum and the planned landing site for ESA’s ExoMars Rosalind Franklin rover. The primary goal of the mission is to search for signs of past or present life on Mars, and as such, this once water-flooded region is an ideal location.
      Zooming out, the flight ends with a stunning bird’s-eye view of Ares Vallis and its fascinating  water-enriched neighbourhood. 
      Disclaimer: This video is not representative of how Mars Express flies over the surface of Mars. See processing notes below.
      How the movie was made
      This film was created using the Mars Express High Resolution Stereo Camera Mars Chart (HMC30) data, an image mosaic made from single orbit observations of the High Resolution Stereo Camera (HRSC). The mosaic, centred at 12°N/330°E, is combined with topography information from the digital terrain model to generate a three-dimensional landscape. 
      For every second of the movie, 50 separate frames are rendered following a predefined camera path in the scene. A three-fold vertical exaggeration has been applied. Atmospheric effects such as clouds and haze have been added to conceal the limits of the terrain model. The haze starts building up at a distance of 300 km. 
      The HRSC camera on Mars Express is operated by the German Aerospace Center (DLR). The systematic processing of the camera data took place at the DLR Institute for Planetary Research in Berlin-Adlershof. The working group of Planetary Science and Remote Sensing at Freie Universität Berlin used the data to create the film.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)
      NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on Nov. 14, 2024 — sol 4363, or Martian day 4,363 of the Mars Science Laboratory mission – at 02:55:34 UTC. NASA/JPL-Caltech Earth planning date: Friday, Nov. 15, 2024
      The Monday plan and drive had executed successfully, so the team had high hopes for APXS and MAHLI data on several enticing targets in the rover’s workspace. Alas, it was not to be: The challenging terrain had resulted in an awkwardly perched wheel at the end of the drive, so we couldn’t risk deploying the arm from this position. Maybe next drive!
      We did plan a busy weekend of non-arm science activities regardless. Due to a “soliday” the weekend has two sols instead of three, but we had enough power available to fit in more than three hours of observations. The two LIBS observations in the plan will measure the composition of the flat, reddish material in the workspace that is fractured in a polygonal pattern (“Bloody Canyon”) and a nearby rock coating in which the composition is suspected to change with depth (“Burnt Camp Creek”). One idea is that the reddish material could be the early stage version of the thicker dark coatings we’ve been seeing.
      A large Mastcam mosaic (“Yosemite”) was planned to capture the very interesting view to the rover’s north. Nearby and below the rover is the layer of rocks in which the “Mineral King” site was drilled on the opposite side of the channel back in March. This is a stratum of sulfate-bearing rock that appears dark-toned from orbit and we’re interested to know how consistent its features are from one side of the channel to the other. Higher up, the Yosemite mosaic also captures some deformation features that may reveal past water activity, and some terrain associated with the Gediz Vallis ridge. So there’s a lot of science packed into one mosaic!
      Two long-distance RMI mosaics were planned; one is to image back into the channel, where there may be evidence of a late-stage debris flow at the base of the ridge. The second looks “forward” from the rover’s perspective instead, into the wind-shaped yardang unit above us that will hopefully be explored close-up in the rover’s future. This yardang mosaic is intended to form one part of a stereo observation.
      The modern environment on Mars will also be observed with dust devil surveys on both sols, line-of-sight and tau observations to measure atmospheric opacity (often increased by dust in the atmosphere), and zenith and suprahorizon movies with Navcam to look for clouds. There will also be standard passive observations of the rover’s environment by REMS and DAN.
      We’ll continue driving westward and upward, rounding the Texoli butte to keep climbing through the sulfate-bearing unit. It’s not always easy driving but there’s a lot more science to do!
      Written by Lucy Lim, Participating Scientist at NASA’s Goddard Space Flight Center
      Share








      Details
      Last Updated Nov 18, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4362-4363: Plates and Polygons


      Article


      6 days ago
      3 min read Peculiar Pale Pebbles
      During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…


      Article


      6 days ago
      2 min read Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4362-4363: Plates and Polygons
      NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI) on Nov. 11, 2024 – sol 4360, or Martian day 4,360 of the Mars Science Laboratory Mission – at 00:06:13 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Nov. 11, 2024
      After a successful 23-meter (about 75 feet) drive today in pre-planning we found ourselves in front of some rocks with a curious dark, platy topping. This is similar to material we have seen previously including over the weekend where MAHLI imaged “Buttress Tree.” This beautiful hand-lens image is shown above, where you can see this more resistant platy texture at the top of the layered rock. Unfortunately it was deemed too unsafe to move the arm today, so no contact science observations were made on this dark material, but a plethora of remote science made up for it!
      A curious curved fracture along a rock in the workspace became the target of our ChemCam LIBS laser shots called “Pioneer Basin.” ChemCam will then take a long-distance RMI looking back at Gediz Vallis channel, which we have been driving away from. Mastcam is focusing on taking two mosaics of areas of rocks that exhibit light- and dark-toned bands from orbit. We previously drove across these bands in January before we crossed the Gediz Vallis channel. Now that we are over the channel, we are about to drive on the dark, banded material once again. Mastcam is also imaging some interesting polygonal textures we see in a few rocks around the rover. To keep it simple, the science team named all four targets of polygonal rocks “Acrodectes Peak.”
      As Curiosity drives further away from the Gediz Vallis channel, the exploration of the sulfate unit continues. Although the driving is tough at times, the beautiful discoveries and amazing geology make the tough times worth it. Let’s hope we can get some contact science activities safe and sound in the next plan.
      Written by Emma Harris, Graduate Student at Natural History Museum, London
      Share








      Details
      Last Updated Nov 13, 2024 Related Terms
      Blogs Explore More
      3 min read Peculiar Pale Pebbles
      During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…


      Article


      14 hours ago
      2 min read Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!


      Article


      1 day ago
      4 min read Sols 4357–4358: Turning West


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...