Jump to content

Sols 4241–4242: We Can’t Go Around It…We’ve Got To Go Through It!


NASA

Recommended Posts

  • Publishers

2 min read

Sols 4241–4242: We Can’t Go Around It…We’ve Got To Go Through It!

Grayscale photo shows an extreme wide-angle view of the Martian landscape, with the horizon forming a semicircle across the upper third of the frame. Light-colored rocks – almost white – are exposed and scattered across the medium gray, pebbly soil just in front of the rover, filling the center of the frame, while smooth, gentle hills mark the horizon beyond.
This image was taken by the Front Hazard Avoidance Camera (Front Hazcam) aboard NASA’s Mars rover Curiosity on Sol 4237 – Martian day 4,237 of the Mars Science Laboratory mission – on July 7, 2024 at 14:46:38 UTC.

Earth planning date: Wednesday, July 10, 2024

Curiosity is currently trekking across Gediz Vallis channel because, as my nephew’s favorite book says, if we can’t go around it… we’ve got to go through it! Recently we’ve been parked for a while on the channel to drill “Mammoth Lakes,” (https://science.nasa.gov/blogs/sols-4222-4224-a-particularly-prickly-power-puzzle/) and are now on the move once again exploring the rubbly rocks. Today the science team planned two sols of activity for Curiosity as we venture on through and across Gediz Vallis channel.

On the first sol we undertake nearly two hours of planned science. This includes Navcam deck monitoring and a Mastcam tau, to measure dust in the atmosphere as part of our atmospheric and environmental activities, alongside some geology-focused observations. MAHLI is taking a close up image of “Donohue Pass” that we targeted with ChemCam LIBS and Mastcam imagery in the previous plan (https://science.nasa.gov/blogs/sols-4239-4240-vuggin-out/). ChemCam will take a LIBS on a rock named “Negit Island” that caught the team’s eye with a lighter base and a darker upper section. ChemCam will also take two RMIs of Gediz Vallis, one to document the wall of Gediz Vallis channel that we can see up ahead of us, and one looking at the rocks that sit within the channel. Mastcam is also taking a look at the wall of Gediz Vallis, as well as continuing a mega-mosaic started in the last plan that took 54 images of “Stubblefield Canyon.” Today we planned another 48 images to document the rest of this area named “Echo Ridge.”

ChemCam will take a passive observation of an interesting rubbly target in this region called “Wishbone Lake,” prior to a five-meter drive (about 16 feet) over to this feature. Once we have arrived, Curiosity will take some post-drive Navcam imaging and a MARDI image of our left-front wheel. After a well-deserved sleep, on the second sol of this plan Curiosity will automatically choose a LIBS target in our new workspace, before taking a dust-devil and suprahorizon movie to round off this plan.

Written by Emma Harris, Graduate Student at Natural History Museum, London

Share

Details

Last Updated
Jul 12, 2024

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Persevering Through the Storm
      A region-wide seasonal dust storm obscures the Jezero Crater in this image from NASA’s Mars Perseverance rover, acquired using its Left Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover’s mast. Perseverance captured the image on Aug. 20, 2024 (Sol 1244, or Martian day 1,244 of the Mars 2020 mission) at the local mean solar time of 16:05:34. This image is part of a Mastcam-Z mosaic of the “northern fan,” a part of Jezero Crater that Perseverance never drove through, but is an area that’s thought to have been deposited in a similar way to the delta that the rover did explore. NASA/JPL-Caltech/ASU It is dust-storm season on Mars! Over the past couple of weeks, as we have been ascending the Jezero Crater rim, our science team has been monitoring rising amounts of dust in the atmosphere. This is expected: Dust activity is typically highest around this time of the Martian year (early Spring in the northern hemisphere). The increased dust has made our views back toward the crater hazier than usual, and provided our atmospheric scientists with a great opportunity to study the way that dust storms form, develop, and spread around the planet.
      Perseverance has a suite of scientific instruments well-suited to study the Martian atmosphere. The Mars Environmental Dynamics Analyzer (MEDA) provides regular weather reports, the cadence of which has increased during the storm to maximize our science. We also routinely point our Mastcam-Z imager toward the sky to assess the optical density (“tau”) of the atmosphere.
      There are not any signs that this regional dust storm will become planetwide — like the global dust storm in 2018 — but every day we are assessing new atmospheric data. Hopefully the skies will further clear up as we continue to climb in the coming weeks, because we are expecting stunning views of the crater floor and Jezero delta. This will offer the Perseverance team a unique chance to reflect on the tens of kilometers we have driven and years we have spent exploring Mars together.
      Written by Henry Manelski, Ph.D. student at Purdue University
      Share








      Details
      Last Updated Sep 05, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4295-4296: A Martian Moon and Planet Earth


      Article


      7 hours ago
      2 min read Sol 4294: Return to McDonald Pass


      Article


      21 hours ago
      3 min read Sols 4291-4293: Fairview Dome, the Sequel


      Article


      22 hours ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4295-4296: A Martian Moon and Planet Earth
      Using an onboard focusing process, the Mars Hand Lens Imager (MAHLI) aboard NASA’s Mars rover Curiosity created this product by merging two to eight images previously taken by the MAHLI, which is located on the turret at the end of the rover’s robotic arm. Curiosity performed the merge on Sept. 4, 2024, at 06:30:48 UTC — sol 4294, or Martian day 4,294 of the Mars Science Laboratory mission. The onboard focus merge is sometimes performed on images acquired the same sol as the merge, and sometimes using pictures obtained earlier. Focus merging is a method to make a composite of images of the same target acquired at different focus positions to bring as many features as possible into focus in a single image. The MAHLI focus merge also serves as a means to reduce the number of images sent back to Earth. Each focus merge produces two images: a color, best-focus product and a black-and-white image that scientists can use to estimate focus position for each element of the best-focus product. So up to eight images can be merged, but the number of images returned to Earth is two. NASA/JPL-Caltech/MSSS Earth planning date: Wednesday, Sept. 4, 2024
      Today’s two-sol plan contains the usual science blocks filled with contact science and remote science to observe and assess the geology surrounding us. However, the Mastcam team is hoping to capture a special celestial event above the Martian skyline as one of Mars’ moons, Phobos, will be in conjunction with Earth on the evening of the first sol of this plan. So everyone look up, and smile for the camera!
      Coming back to our beautiful workspace, in this plan there is a focus on targeting the different colors and tones we can see in the bedrock with our suite of instruments. In the image above we can see some of these varying tones — including gray areas, lighter-toned areas, and areas of tan-colored bedrock — with an image from the MAHLI instrument, Curiosity’s onboard hand lens.
      APXS is targeting “Campfire Lake,” a lighter-toned area, and “Gemini,” a more gray-toned area situated in front of the rover. MAHLI is taking a suite of close-up images of these targets too. ChemCam is then taking two LIBS measurements of “Crazy Lake” and “Foolish Lake,” both of which appear to have lighter tones. Mastcam is documenting this whole area with a workspace mosaic and an 8×2 mosaic of “Picture Puzzle,” named after the rock in the image above that was taken during the previous plan. Mastcam will also be capturing a 6×3 mosaic of an outcrop named “Outguard Spire” that has an interesting gray rim. Looking further afield, ChemCam has planned a long-distance RMI image of the yardang unit and Navcam is taking a suprahorizon movie and dust-devil survey for our continued observations of the atmosphere to round out this plan.
      Written by Emma Harris, Graduate Student at Natural History Museum, London
      Share








      Details
      Last Updated Sep 05, 2024 Related Terms
      Blogs Explore More
      2 min read Sol 4294: Return to McDonald Pass


      Article


      15 hours ago
      3 min read Sols 4291-4293: Fairview Dome, the Sequel


      Article


      16 hours ago
      3 min read Behind the Scenes at the 2024 Mars 2020 Science Team Meeting
      The Mars 2020 Science Team meets in Pasadena for 3 days of science synthesis


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4291-4293: Fairview Dome, the Sequel
      This image was taken by Left Navigation Camera aboard NASA’s Mars rover Curiosity on sol 4289 — Martian day 4,289 of the Mars Science Laboratory mission — on Aug. 30, 2024 at 03:48:38 UTC. To the left of the crescent-shaped formation in the low-center part of the image, a wheel track is visible along with an “intriguing” batch of shattered rock where Curiosity had previously driven. NASA/JPL-Caltech Earth planning date: Friday, Aug. 30, 2024
      Our backwards drive to “McDonald Pass” got hung up on the steep slopes of “Fairview Dome,” but unlike a lot of movie sequels, our inadvertent return visit to Fairview Dome was at least as good as the original. We took full advantage of the chance to investigate this bedrock rise within Gediz Vallis with multiple contact and remote science targets. 
      MAHLI and APXS paired up on two different DRT targets of more- and less-nodular spots of bedrock at “Lower Boy Scout Lake” and “Upper Boy Scout Lake.” You can see in the Navcam image above that just beyond the bedrock slab we stopped on, there is a wheel track and a shattered batch of rock. We crushed that bit of rock as we drove backward and were left with a great view of it, including some intriguing bright rock interiors. ChemCam targeted one of those bright rock faces at “North Palisade” and Mastcam acquired a mosaic across the whole field of broken rocks at “Ritter-Banner Saddle.” The churned-up sand of Ritter-Banner Saddle also made for a convenient change detection target as we keep our eye on the wind effects of a potential dust storm rising on Mars. ChemCam had two other opportunities for LIBS analyses at a nodular bedrock target called “Regulation Peak,” and another intriguing vertical rock face with strong color differences called “Simmons Peak.” ChemCam used RMI mosaics to image a collection of higher albedo rocks in Gediz Vallis at a site called “Buckeye Ridge.” Mastcam planned a mosaic of a different part of Gediz Vallis that is in the direction we are driving next, which will help plot those drives and also give us some insight into the boulders strewn about that part of the valley. Closer to the rover, the “Outguard Spire” target was of interest for Mastcam imaging because of its color zonation — the way colors are distributed across different areas, or zones, of the rock. It’s the kind of zonation we intend to study at McDonald Pass. The trough of sand at the “Whitney-Russell Pass” target was of interest for its potential insights into how bedrock blocks break up on Mars.
      Monitoring the potential rise of a dust storm meant that the plan was busy with environmental observations. ChemCam acquired a passive sky observation, Navcam collected two rounds of dust-devil imaging, cloud movies, and atmospheric dust measurements, Mastcam acquired multiple atmospheric dust measurements, and REMS ran in longer blocks throughout each sol than it does in normal weather conditions. Dust or not, RAD and DAN passive were planned regularly through the three sols of the plan.
      Written by Michelle Minitti, Planetary Geologist at Framework
      Share








      Details
      Last Updated Sep 05, 2024 Related Terms
      Blogs Explore More
      2 min read Sol 4294: Return to McDonald Pass


      Article


      9 mins ago
      3 min read Behind the Scenes at the 2024 Mars 2020 Science Team Meeting
      The Mars 2020 Science Team meets in Pasadena for 3 days of science synthesis


      Article


      6 days ago
      4 min read Sols 4289-4290: From Discovery Pinnacle to Kings Canyon and Back Again


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Texas High School Aerospace Scholars get a virtual view of an extravehicular activity (EVA) suit in testing at NASA’s Johnson Space Center in Houston. Photo credit: NASA/Helen Arase Vargas Explore the universe this fall without leaving your classroom through live virtual engagements with NASA space and aviation experts. NASA is offering a new lineup of stellar virtual experiences to spark STEM excitement and connect students with the agency’s missions, science, careers, and more.
      The virtual engagements, managed by NASA’s Next Gen STEM project, are free to join and open to both formal and informal education groups. These options are sure to launch your students’ love of STEM:
      NASA Back-to-School Career Day (Grades K-12)
      On Sept. 26, NASA is hosting a Back-to-School Career Day showcasing a variety of NASA careers with virtual tours of agency facilities, live Q&A with experts, and more.
      Open to K-12 formal and informal education organizations, the registration deadline is Thursday, Sept. 5. In addition to the live event, the interactive platform will be available from Monday, Sept. 23, through Friday, Sept. 27.
      Europa Clipper Launch Virtual Watch Party (All Grade Levels)
      NASA’s Europa Clipper spacecraft is scheduled to launch no earlier than Oct. 10 on a mission to investigate whether Jupiter’s icy moon, Europa, could contain the building blocks needed to support life. The launch window opens on Oct. 10 during the school day at 12:32 p.m. EDT, and your classroom can be part of this pioneering mission. Sign up to watch the launch online, visit Europa Clipper’s Participation Hub for more opportunities, and find additional resources on Europa Clipper’s Kids Resources Hub.
      NQuest Virtual Workshops (Grades 6-8)
      NQuest offers 45-minute virtual workshops every Monday and Thursday. Available on a first-come, first-served basis, these free workshops include a live presentation, captivating NASA videos, and a hands-on activity to bring STEM concepts to life. All you need is a laptop, projector, and basic classroom supplies. Workshops can be scheduled to fit your school’s bell schedule between 11:30 a.m. and 6:30 p.m. EDT. Register your class by Oct. 11.
      “Astro-Not-Yets” Virtual Classroom Connections (Grades K-4)
      Introduce your students to the Astro-Not-Yets, a series of short stories that teach students about NASA’s Commercial Crew Program. In each of these monthly virtual events, a NASA expert whose job relates to the story will read the book to students, then answer their questions.
      Wednesday, Oct. 23: The Astro-Not-Yets! Explore Sound. Students will learn how sound travels and experiment with transmitting sound through a string-cup phone. Registration deadline: Wednesday, Oct. 9. Wednesday, Nov. 20: Astro-Not-Yets! Explore Energy. Students will learn how spacecraft safely bring astronauts home from space, then design and test their own system to safely land an egg on the ground. Registration deadline: Wednesday, Nov. 6. Wednesday, Dec. 11: Astro-Not-Yets! Explore Microgravity. Students will learn all about gravity, microgravity, and the International Space Station. Registration deadline: Wednesday, Nov. 27. “First Women” Virtual Classroom Connections (Grades 5-12)
      This series introduces some of the women at NASA who have made significant achievements in STEM. Students get to hear their stories first-hand and ask them questions in a live Q&A.
      Wednesday, Oct. 16: Meet NASA’s first female launch director, Charlie Blackwell-Thompson. She led the launch team during the uncrewed Artemis I mission around the Moon in 2022. Now, she and her team are preparing for the first crewed Artemis mission, Artemis II. Registration deadline: Monday, Sept. 30. Wednesday, Nov. 6: Meet Laurie A. Grindle and learn about NASA’s first X-43A Guinness world record. Today, Grindle is deputy center director at NASA’s Armstrong Flight Research Center in Edwards, California, but in 2004, the X-43A aircraft she and her team developed set the Guinness World Record for “the fastest air-breathing aircraft” twice in one year. Registration deadline: Monday, Oct. 21. Wednesday, Dec. 4: Meet Dr. Ruth Jones, NASA’s 2024 Wings of Excellence Awardee. Jones will share her experience as a woman in STEM and tell students what it was like to become the first woman to earn a bachelor’s degree in physics from the University of Arkansas at Pine Bluff. Registration deadline: Monday, Nov. 18. Surprisingly STEM Career Explorations Virtual Events (Grades 5-12)
      The Surprisingly STEM video series highlights some of NASA’s many unexpected careers. In these events, experts from the videos discuss their unusual and exciting jobs and share their journeys that led them to NASA.
      Thursday, Oct. 24: Soft robotics engineer Jim Neilan explains the importance of soft robotics in human spaceflight and some of the role’s critical skills. Registration deadline: Friday, Oct. 18. Thursday, Nov. 14: Exploration geologist Angela Garcia takes students behind the scenes of her job training NASA astronauts to explore for the “crater” good of humanity. Registration deadline: Thursday, Nov. 7. Thursday, Dec. 12: Memory metal engineer Othmane Benafan explains how he “trains” metal to bend, stretch, and twist when prompted, and how this technology benefits NASA missions. Registration deadline: Thursday, Dec. 5. Bring NASA Experts Into the Classroom (All Grades)
      NASA recently launched NASA Engages, a new, database-driven platform designed to connect a wide range of audiences with experts from across the space agency – both virtually and in person. Available to classrooms from preschool to college, informal education organizations such as libraries and science centers, and other eligible groups, NASA Engages enables educators and group leaders to find inspirational guest speakers, knowledgeable science fair judges, and more.
      There’s More to Explore
      Find student challenges, hands-on activities, and more opportunities on the Learning Resources website managed by NASA’s Office of STEM Engagement. Visit How Do I Navigate NASA Learning Resources and Opportunities? to explore additional platforms and offerings to enhance your STEM curriculum. Subscribe to the weekly NASA EXPRESS e-newsletter to discover the latest events, resources, and other opportunities to bring NASA into your classroom. Explore More
      7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
      Article 20 hours ago 3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night
      During the April 8, 2024 total solar eclipse, approximately 770 AudioMoth recording devices were used…
      Article 22 hours ago 10 min read 40 Years Ago: President Reagan Announces Teacher in Space Project
      Article 2 days ago View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      Sols 4289-4290: From Discovery Pinnacle to Kings Canyon and Back Again
      This image shows the workspace in front of NASA’s Mars rover Curiosity, taken by the Left Navigation Camera aboard the rover on sol 4287 — Martian day 4,287 of the Mars Science Laboratory mission — on Aug. 28, 2024, at 02:23:27 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Aug. 28 2024
      We are back … almost, anyways. Today’s parking location is very close to where we parked on sol 4253, and in an area near one of the previous contact science targets “Discovery Pinnacle.” You can read in this blog post that most of the team, this blogger included, was in Pasadena for our team meeting when we were last in this area. That was July and Curiosity was about to turn 12 on Mars. Coming back is a very rare occasion and is always planned carefully. Once or twice during the last 12 years it happened because we saw something “in the rear mirror.” One of the examples is the target “Old Soaker,” where we spotted mud cracks in the images from a previous parking position, and promptly went back because this was such an important discovery. At other times it was carefully planned, such as the “walkabout” at “Pink Cliffs,” which you can watch in this video from as long back as Earth year 2015. In the past few planning cycles, it’s more of the latter as we made our way from Discovery Pinnacle, where we were on sol 4253, “Just passing through” “Russell Pass” and arriving at “Kings Canyon,” our drill location, which we reached on sol 4257. You can follow all the action of the drilling at Kings Canyon on the blogs. It took a while — it always does — because it’s an activity with many steps and investigations to complete. We actually celebrated Curiosity’s 12th birthday at Kings Canyon! We departed on sol 4283, came back via “Cathedral Peak,” and are now near the Discovery Pinnacle location again. After that little walkabout through the history of (some) of Curiosity’s walkabouts, especially the very last one, let’s look at today’s plan.
      It is a pretty normal two-sol plan, with a one-hour science block before we drive away from this location. We were greeted by a nicely flat surface, and the engineers informed us that we have all six wheels firmly on flat and stable ground. That’s always a relief, because only then can we use the arm. That nice piece of flat rock Curiosity is so firmly parked on became our science target …well, mostly. Some of the little pebbles on the surface attracted our attention, too. The very eagle-eyed can spot a small white spot in the image above. It’s right between the arm and the rover itself, about where the C is written. That’s a rock that we likely broke up with our wheel and that has a very white part to it. We called it “Thousand Island Lake,” and will image it with MAHLI. APXS is investigating a target called “Eichorn Pinnacle,” squarely on the big flat area. LIBS is also making the most of the large target underneath and in front of us, investigating the target “Nine Lakes Basin.”
      In recent blogs you will have read about the dust-storm watch making the atmospheric investigations even more important, so we don’t miss any changes. We are looking for dust devils, atmospheric opacity, and are of course monitoring the weather throughout the plan.
      Our drive will hopefully — if Mars agrees — be a long one, and we will also plan an activity that we call MARDI sidewalk. That’s when we take very frequent pictures with the MARDI instrument while driving. This results in a long strip of images nicely showing the nature of the terrain the rover has driven over. This is in addition to the MARDI single frame we are taking every time the rover stops. I often get the question, why are we taking an image just downwards whenever the rover stops? Well, humans are easy to bias toward the outliers, toward the things that look special, and of course the Curiosity team is no exception. For some things this is great, because it allows for the discoveries of new things. But it doesn’t provide an unbiased overview. That’s what MARDI does: It always points down and reliably records the terrain under the rover. We don’t have to do anything but put the commands for that one image into our plan after the drive — something that’s pretty routine after 12 years now!
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Aug 29, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4287-4288: Back on the Road


      Article


      1 day ago
      3 min read Perseverance Kicks off the Crater Rim Campaign!
      Perseverance is officially headed into a new phase of scientific investigation on the Jezero Crater…


      Article


      2 days ago
      4 min read Sols 4284–4286: Environmental Science Extravaganza


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...