Jump to content

NASA to Commemorate 55th Anniversary of Apollo 11 Moon Landing


NASA

Recommended Posts

  • Publishers
On the desolate pock-marked lunar surface, astronaut Edwin E. Aldrin Jr., wearing a white Extravehicular Mobility Unit spacesuit, stands to the right of the American flag planted in the soil. The flag is unfurled and waving to the left, with Aldrin facing it in the image and seen from a side view.
Apollo astronaut Buzz Aldrin poses for a photograph beside the deployed United States flag during an Apollo 11 moonwalk on July 20, 1969. The Lunar Module is on the left, and the footprints of the astronauts are clearly visible in the soil of the moon.
Credit: NASA

As the agency explores more of the Moon than ever before under the Artemis campaign, NASA will celebrate the 55th anniversary of the first astronauts landing on the Moon through a variety of in-person, virtual, and engagement activities nationwide between Monday, July 15, and Thursday, July 25.

Events will honor America’s vision and technology that enabled the Apollo 11 crewed lunar landing on July 20, 1969, as well as Apollo-era inventions and techniques that spread into public life, many of which are still in use today. Activities also will highlight NASA’s Artemis campaign, which includes landing the first woman, first person of color, and first international astronaut on the Moon, inspiring great achievements, exploration, and scientific discovery for the benefit of all.

NASA’s subject matter experts are available for a limited number of interviews about the anniversary. To request an interview virtually or in person, contact Jessica Taveau in the newsroom: jessica.c.taveau@nasa.gov.

During the week of July 15, the agency also will share the iconic bootprint image and the significance of Apollo 11 to NASA’s mission, as well as use the #Apollo11 hashtag, across its digital platforms online.

Additional activities from NASA include:

  • Monday, July 15 and Tuesday, July 16, NASA’s Michoud Assembly Facility in New Orleans, Louisiana: NASA will host the rollout of the agency’s Artemis II SLS (Space Launch System) core stage.
  • Friday, July 19, NASA’s Johnson Space Center in Houston: In a dedication and ribbon cutting, the center will name its building 12 the ‘Dorothy Vaughan Center in Honor of the Women of Apollo.’ Vaughan was a mathematician, computer programmer, and NASA’s first Black manager.
  • Sunday, July 21, NASA’s Goddard Space Flight Center in Greenbelt, Maryland: NASA Goddard will host a model rocket contest conducted by the National Association of Rocketry Headquarters Astro Modeling Section. This free contest is open to all model rocketeers and the public.

 Other activities include:

  • Tuesday, July 16 through Wednesday, July 24, Space Center Houston: The center will host pop-up science labs, mission briefings, special tram tours that feature the Mission Control Center at NASA Johnson, and more.
  • Friday, July 19 through Saturday, July 20, National Cathedral in Washington: The cathedral will host a festival marking the 50th anniversary of its Space Window, which contains a piece of lunar rock that was donated by NASA and the crew of Apollo 11.
  • Thursday, July 25, San Diego Comic-Con: NASA representatives will participate in a panel entitled ‘Exploring the Moon: the Artemis Generation.’ Panelists are:
    • Stan Love, NASA astronaut
    • A.C. Charania, NASA chief technologist
    • Dionne Hernandez-Lugo, NASA’s Gateway Program
    • Jackelynne Silva-Martinez, NASA Human Health and Performance

For more details about NASA’s Apollo Program, please visit:

https://www.nasa.gov/the-apollo-program

-end-

Cheryl Warner / Jessica Taveau
Headquarters, Washington
202-356-1600
cheryl.m.warner@nasa.gov / jessica.c.taveau@nasa.gov

Share

Details

Last Updated
Jul 12, 2024

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By NASA
      An artist’s concept of SpaceX’s Starship Human Landing System (HLS) on the Moon. NASA is working with SpaceX to develop the Starship HLS to carry astronauts from lunar orbit to the Moon’s surface and back for Artemis III and Artemis IV. Starship HLS is roughly 50 meters tall, or about the length of an Olympic swimming pool. SpaceX This artist’s concept depicts a SpaceX Starship tanker (bottom) transferring propellant to a Starship depot (top) in low Earth orbit. Before astronauts launch in Orion atop the agency’s SLS (Space Launch System) rocket, SpaceX will launch a storage depot to Earth orbit. For the Artemis III and Artemis IV missions, SpaceX plans to complete propellant loading operations in Earth orbit to send a fully fueled Starship Human Landing System (HLS) to the Moon. SpaceX An artist’s concept shows how a crewed Orion spacecraft will dock to SpaceX’s Starship Human Landing System (HLS) in lunar orbit for Artemis III. Starship HLS will dock directly to Orion so that two astronauts can transfer to the lander to descend to the Moon’s surface, while two others remain in Orion. Beginning with Artemis IV, NASA’s Gateway lunar space station will serve as the crew transfer point. SpaceX The artist’s concept shows two Artemis III astronauts preparing to step off the elevator at the bottom of SpaceX’s Starship HLS to the Moon’s surface. At about 164 feet (50 m), Starship HLS will be about the same height as a 15-story building. (SpaceX)The elevator will be used to transport crew and cargo between the lander and the surface. SpaceX NASA is working with U.S. industry to develop the human landing systems that will safely carry astronauts from lunar orbit to the surface of the Moon and back throughout the agency’s Artemis campaign.
      For Artemis III, the first crewed return to the lunar surface in over 50 years, NASA is working with SpaceX to develop the company’s Starship Human Landing System (HLS). Newly updated artist’s conceptual renders show how Starship HLS will dock with NASA’s Orion spacecraft in lunar orbit, then two Artemis crew members will transfer from Orion to Starship and descend to the surface. There, astronauts will collect samples, perform science experiments, and observe the Moon’s environment before returning in Starship to Orion waiting in lunar orbit. Prior to the crewed Artemis III mission, SpaceX will perform an uncrewed landing demonstration mission on the Moon.
      NASA is also working with SpaceX to further develop the company’s Starship lander to meet an extended set of requirements for Artemis IV. These requirements include landing more mass on the Moon and docking with the agency’s Gateway lunar space station for crew transfer.
      The artist’s concept portrays SpaceX’s Starship HLS with two Raptor engines lit performing a braking burn prior to its Moon landing. The burn will occur after Starship HLS departs low lunar orbit to reduce the lander’s velocity prior to final descent to the lunar surface. SpaceX With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      5 min read
      NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
      After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever thanks to a new operational strategy implemented earlier this year. The spacecraft has made great scientific strides in the years since scientists dreamed up a new way to explore gamma-ray bursts, the most powerful explosions in the universe.
      “The idea for Swift was born during a meeting in a hotel basement in Estes Park, Colorado, in the middle of a conference,” said John Nousek, the Swift mission director at Pennsylvania State University in State College. “A bunch of astrophysicists got together to brainstorm a mission that could help us solve the problem of gamma-ray bursts, which were a very big mystery at the time.”
      Watch to learn how NASA’s Neil Gehrels Swift Observatory got its name.
      NASA’s Goddard Space Flight Center Gamma-ray bursts occur all over the sky without warning, with about one a day detected on average. Astronomers generally divide these bursts into two categories. Long bursts produce an initial pulse of gamma rays for two seconds or more and occur when the cores of massive stars collapse to form black holes. Short bursts last less than two seconds and are caused by the mergers of dense objects like neutron stars.
      But in 1997, at the time of that basement meeting, the science community disagreed over the origin models for these events. Astronomers needed a satellite that could move quickly to locate them and move to point additional instruments at their positions.
      What developed was Swift, which launched Nov. 20, 2004, from Complex 17A at what is now Cape Canaveral Space Force Station in Florida. Originally called the Swift Observatory for its ability to quickly point at cosmic events, the mission team renamed the spacecraft in 2018 after its first principal investigator Neil Gehrels.
      Swift uses several methods for orienting and stabilizing itself in space to study gamma-ray bursts.
      Sensors that detect the Sun’s location and the direction of Earth’s magnetic field provide the spacecraft with a general sense of its location. Then, a device called a star tracker looks at stars and tells the spacecraft how to maneuver to keep the observatory precisely pointed at the same position during long observations.
      Swift uses three spinning gyroscopes, or gyros, to carry out those moves along three axes. The gyros were designed to align at right angles to each other, but once in orbit the mission team discovered they were slightly misaligned. The flight operations team developed a strategy where one of the gyros worked to correct the misalignment while the other two pointed Swift to achieve its science goals.
      The team wanted to be ready in case one of the gyros failed, however, so in 2009 they developed a plan to operate Swift using just two.
      Swift orbits above Earth in this artist’s concept. NASA’s Goddard Space Flight Center Conceptual Image Lab Any change to the way a telescope operates once in space carries risk, however. Since Swift was working well, the team sat on their plan for 15 years.
      Then, in July 2023, one of Swift’s gyros began working improperly. Because the telescope couldn’t hold its pointing position accurately, observations got progressively blurrier until the gyro failed entirely in March 2024.
      “Because we already had the shift to two gyros planned out, we were able to quickly and thoroughly test the procedure here on the ground before implementing it on the spacecraft,” said Mark Hilliard, Swift’s flight operations team lead at Omitron, Inc. and Penn State. “Actually, scientists have commented that the accuracy of Swift’s pointing is now better than it was since launch, which is really encouraging.”
      For the last 20 years, Swift has contributed to groundbreaking results — not only for gamma-ray bursts but also for black holes, stars, comets, and other cosmic objects.
      “After all this time, Swift remains a crucial part of NASA’s fleet,” said S. Bradley Cenko, Swift’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The satellite’s abilities have helped pioneer a new era of astrophysics called multimessenger astronomy, which is giving us a more well-rounded view of how the universe works. We’re looking forward to all Swift has left to teach us.”
      Swift is a key part of NASA’s strategy to look for fleeting and unpredictable changes in the sky with a variety of telescopes that use different methods of studying the cosmos.
      Goddard manages the Swift mission in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Space Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory in Italy, and the Italian Space Agency.

      Download high-resolution images on NASA’s Scientific Visualization Studio

      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Nov 20, 2024 Editor Jeanette Kazmierczak Location Goddard Space Flight Center Related Terms
      Astrophysics Gamma-Ray Bursts Goddard Space Flight Center Neil Gehrels Swift Observatory The Universe View the full article
    • By NASA
      Imagine designing technology that can survive on the Moon for up to a decade, providing a continuous energy supply. NASA selected three companies to develop such systems, aimed at providing a power source at the Moon’s South Pole for Artemis missions. 

      Three companies were awarded contracts in 2022 with plans to test their self-sustaining solar arrays at the Johnson Space Center’s Space Environment Simulation Laboratory (SESL) in Houston, specifically in Chamber A in building 32. The prototypes tested to date have undergone rigorous evaluations to ensure the technology can withstand the harsh lunar environment and deploy the solar array effectively on the lunar surface. 
      The Honeybee Robotics prototype during lunar VSAT (Vertical Solar Array Technology) testing inside Chamber A at NASA’s Johnson Space Center in Houston.NASA/David DeHoyos The Astrobotic Technology prototype during lunar VSAT testing inside Chamber A at Johnson Space Center. NASA/James Blair In the summer of 2024, both Honeybee Robotics, a Blue Origin company from Altadena, California and Astrobotic Technology from Pittsburgh, Pennsylvania put their solar array concepts to the test in Chamber A. 

      Each company has engineered a unique solution to design the arrays to withstand the harsh lunar environment and extreme temperature swings. The data collected in the SESL will support refinement of requirements and the designs for future technological advancements with the goal to deploy at least one of the systems near the Moon’s South Pole. 

      The contracts for this initiative are part of NASA’s VSAT (Vertical Solar Array Technology) project, aiming to support the agency’s long-term lunar surface operations. VSAT is under the Space Technology Mission Directorate Game Changing Development program and led by the Langley Research Center in Hampton, Virginia, in collaboration with Glenn Research Center in Cleveland.  

      “We foresee the Moon as a hub for manufacturing satellites and hardware, leveraging the energy required to launch from the lunar surface,” said Jim Burgess, VSAT lead systems engineer. “This vision could revolutionize space exploration and industry.” 

      Built in 1965, the SESL initially supported the Gemini and Apollo programs but was adapted to conduct testing for other missions like the Space Shuttle Program and Mars rovers, as well as validate the design of the James Webb Space Telescope. Today, it continues to evolve to support future Artemis exploration. 

      Johnson’s Front Door initiative aims to solve the challenges of space exploration by opening opportunities to the public and bringing together bold and innovative ideas to explore new destinations. 

      “The SESL is just one of the hundreds of unique capabilities that we have here at Johnson,” said Molly Bannon, Johnson’s Innovation and Strategy specialist. “The Front Door provides a clear understanding of all our capabilities and services, the ways in which our partners can access them, and how to contact us. We know that we can go further together with all our partners across the entire space ecosystem if we bring everyone together as the hub of human spaceflight.” 

      Chamber A remains as one of the largest thermal vacuum chambers of its kind, with the unique capability to provide extreme deep space temperature conditions down to as low as 20 Kelvin. This allows engineers to gather essential data on how technologies react to the Moon’s severe conditions, particularly during the frigid lunar night where the systems may need to survive for 96 hours in darkness. 

      “Testing these prototypes will help ensure more safe and reliable space mission technologies,” said Chuck Taylor, VSAT project manager. “The goal is to create a self-sustaining system that can support lunar exploration and beyond, making our presence on the Moon not just feasible but sustainable.” 

      The power generation systems must be self-aware to manage outages and ensure survival on the lunar surface. These systems will need to communicate with habitats and rovers and provide continuous power and recharging as needed. They must also deploy on a curved surface, extend 32 feet high to reach sunlight, and retract for possible relocation.  

      “Generating power on the Moon involves numerous lessons and constant learning,” said Taylor. “While this might seem like a technical challenge, it’s an exciting frontier that combines known technologies with innovative solutions to navigate lunar conditions and build a dynamic and robust energy network on the Moon.”

      Watch the video below to explore the capabilities and scientific work enabled by the thermal testing conducted in Johnson’s Chamber A facility.
      View the full article
    • By NASA
      NASA NASA astronaut Alan Bean steps off the lunar module ladder in this photo from Nov. 19, 1969, joining astronaut Charles Conrad Jr. on the Moon in the area called the Ocean of Storms. The two would then complete two spacewalks on the lunar surface, deploying science instruments, collecting geology samples, and inspecting the Surveyor 3 spacecraft, which had landed in the same area. While Bean and Conrad worked on the Moon, astronaut Richard F. Gordon completed science from lunar orbit.
      Learn more about Apollo 12’s pinpoint landing on the Moon.
      Image credit: NASA
      View the full article
  • Check out these Videos

×
×
  • Create New...