Members Can Post Anonymously On This Site
Vivid Portrait of Interacting Galaxies Marks Webb’s Second Anniversary
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The radio antennas of NASA’s Canberra Deep Space Communications Complex are lo-cated near the Australian capital. It’s one of three Deep Space Network facilities around the world that keep the agency in contact with dozens of space missions Located at Tidbinbilla Nature Reserve near the Australian capital city, the Canberra complex joined the Deep Space Network on March 19, 1965, with one 85-foot-wide (26-meter-wide) radio antenna. The dish, called Deep Space Station 42, was decommis-sioned in 2000. This photograph shows the facility in 1965.NASA Canberra joined the global network in 1965 and operates four radio antennas. Now, preparations have begun on its fifth as NASA works to increase the network’s capacity.
NASA’s Deep Space Network facility in Canberra, Australia celebrated its 60th anniversary on March 19 while also breaking ground on a new radio antenna. The pair of achievements are major milestones for the network, which communicates with spacecraft all over the solar system using giant dish antennas located at three complexes around the globe.
Canberra’s newest addition, Deep Space Station 33, will be a 112-foot-wide (34-meter-wide) multifrequency beam-waveguide antenna. Buried mostly below ground, a massive concrete pedestal will house cutting-edge electronics and receivers in a climate-controlled room and provide a sturdy base for the reflector dish, which will rotate during operations on a steel platform called an alidade.
Suzanne Dodd, the director for the Interplanetary Network Directorate at JPL, addresses an audience at the Deep Space Network’s Canberra complex on March 19, 2025. That day marked 60 years since the Australian facility joined the network.NASA “As we look back on 60 years of incredible accomplishments at Canberra, the groundbreaking of a new antenna is a symbol for the next 60 years of scientific discovery,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) Program at NASA Headquarters in Washington. “Building cutting-edge antennas is also a symbol of how the Deep Space Network embraces new technologies to enable the exploration of a growing fleet of space missions.”
When it goes online in 2029, the new Canberra dish will be the last of six parabolic dishes constructed under NASA’s Deep Space Network Aperture Enhancement Program, which is helping to support current and future spacecraft and the increased volume of data they provide. The network’s Madrid facility christened a new dish in 2022, and the Goldstone, California, facility is putting the finishing touches on a new antenna.
Canberra’s Role
The Deep Space Network was officially founded on Dec. 24, 1963, when NASA’s early ground stations, including Goldstone, were connected to the new network control center at the agency’s Jet Propulsion Laboratory in Southern California. Called the Space Flight Operations Facility, that building remains the center through which data from the three global complexes flows.
The Madrid facility joined in 1964, and Canberra went online in 1965, going on to help support hundreds of missions, including the Apollo Moon landings.
Three eye-catching posters featuring the larger 230-foot (70-meter) antennas located at the three Deep Space Network complexes around the world.NASA/JPL-Caltech “Canberra has played a crucial part in tracking, communicating, and collecting data from some of the most momentous missions in space history,” said Kevin Ferguson, director of the Canberra Deep Space Communication Complex. “As the network continues to advance and grow, Canberra will continue to play a key role in supporting humanity’s exploration of the cosmos.”
By being spaced equidistant from one another around the globe, the complexes can provide continual coverage of spacecraft, no matter where they are in the solar system as Earth rotates. There is an exception, however: Due to Canberra’s location in the Southern Hemisphere, it is the only one that can send commands to, and receive data from, Voyager 2 as it heads south almost 13 billion miles (21 billion kilometers) through interstellar space. More than 15 billion miles (24 billion kilometers) away, Voyager 1 sends its data down to the Madrid and Goldstone complexes, but it, too, can only receive commands via Canberra.
New Technologies
In addition to constructing more antennas like Canberra’s Deep Space Station 33, NASA is looking to the future by also experimenting with laser, or optical, communications to enable significantly more data to flow to and from Earth. The Deep Space Network currently relies on radio frequencies to communicate, but laser operates at a higher frequency, allowing more data to be transmitted.
As part of that effort, NASA is flying the laser-based Deep Space Optical Communications experiment with the agency’s Psyche mission. Since the October 2023 launch, it has demonstrated high data rates over record-breaking distances and downlinked ultra-high definition streaming video from deep space.
“These new technologies have the potential to boost the science and exploration returns of missions traveling throughout the solar system,” said Amy Smith, deputy project manager for the Deep Space Networkat JPL, which manages the network. “Laser and radio communications could even be combined to build hybrid antennas, or dishes that can communicate using both radio and optical frequencies at the same time. That could be a game changer for NASA.”
For more information about the Deep Space Network, visit:
https://www.nasa.gov/communicating-with-missions/dsn/
NASA’s New Deep Space Network Antenna Has Its Crowning Moment NASA’s New Experimental Antenna Tracks Deep Space Laser VIDEO: How Do We Know Where Faraway Spacecraft Are? News Media Contact
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
2024-048
Explore More
5 min read Perseverance Rover Witnesses One Martian Dust Devil Eating Another
Article 5 days ago 3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
Article 1 week ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
Article 2 weeks ago Share
Details
Last Updated Apr 08, 2025 Related Terms
Deep Space Network Jet Propulsion Laboratory Explore More
5 min read Perseverance Rover Witnesses One Martian Dust Devil Eating Another
Article 5 days ago 3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
Article 1 week ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s SPHEREx, which will map millions of galaxies across the entire sky, captured one of its first exposures March 27. The observatory’s six detectors each captured one of these uncalibrated images, to which visible-light colors have been added to represent infrared wavelengths. SPHEREx’s complete field of view spans the top three images; the same area of the sky is also captured in the bottom three images. NASA/JPL-Caltech Processed with rainbow hues to represent a range of infrared wavelengths, the new pictures indicate the astrophysics space observatory is working as expected.
NASA’s SPHEREx (short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) has turned on its detectors for the first time in space. Initial images from the observatory, which launched March 11, confirm that all systems are working as expected.
Although the new images are uncalibrated and not yet ready to use for science, they give a tantalizing look at SPHEREx’s wide view of the sky. Each bright spot is a source of light, like a star or galaxy, and each image is expected to contain more than 100,000 detected sources.
There are six images in every SPHEREx exposure — one for each detector. The top three images show the same area of sky as the bottom three images. This is the observatory’s full field of view, a rectangular area about 20 times wider than the full Moon. When SPHEREx begins routine science operations in late April, it will take approximately 600 exposures every day.
Each image in this uncalibrated SPHEREx exposure contains about 100,000 light sources, including stars and galaxies. The two insets at right zoom in on sections of one image, showcasing the telescope’s ability to capture faint, distant galaxies. These sections are processed in grayscale rather than visible-light color for ease of viewing.NASA/JPL-Caltech “Our spacecraft has opened its eyes on the universe,” said Olivier Doré, SPHEREx project scientist at Caltech and NASA’s Jet Propulsion Laboratory, both in Southern California. “It’s performing just as it was designed to.”
The SPHEREx observatory detects infrared light, which is invisible to the human eye. To make these first images, science team members assigned a visible color to every infrared wavelength captured by the observatory. Each of the six SPHEREx detectors has 17 unique wavelength bands, for a total of 102 hues in every six-image exposure.
Breaking down color this way can reveal the composition of an object or the distance to a galaxy. With that data, scientists can study topics ranging from the physics that governed the universe less than a second after its birth to the origins of water in our galaxy.
“This is the high point of spacecraft checkout; it’s the thing we wait for,” said Beth Fabinsky, SPHEREx deputy project manager at JPL. “There’s still work to do, but this is the big payoff. And wow! Just wow!”
During the past two weeks, scientists and engineers at JPL, which manages the mission for NASA, have executed a series of spacecraft checks that show all is well so far. In addition, SPHEREx’s detectors and other hardware have been cooling down to their final temperature of around minus 350 degrees Fahrenheit (about minus 210 degrees Celsius). This is necessary because heat can overwhelm the telescope’s ability to detect infrared light, which is sometimes called heat radiation. The new images also show that the telescope is focused correctly. Focusing is done entirely before launch and cannot be adjusted in space.
“Based on the images we are seeing, we can now say that the instrument team nailed it,” said Jamie Bock, SPHEREx’s principal investigator at Caltech and JPL.
How It Works
Where telescopes like NASA’s Hubble and James Webb space telescopes were designed to target small areas of space in detail, SPHEREx is a survey telescope and takes a broad view. Combining its results with those of targeted telescopes will give scientists a more robust understanding of our universe.
The observatory will map the entire celestial sky four times during its two-year prime mission. Using a technique called spectroscopy, SPHEREx will collect the light from hundreds of millions of stars and galaxies in more wavelengths any other all-sky survey telescope.
Track the real-time location of NASA’s SPHEREx space observatory using the agency’s 3D visualization tool, Eyes on the Solar System. When light enters SPHEREx’s telescope, it’s directed down two paths that each lead to a row of three detectors. The observatory’s detectors are like eyes, and set on top of them are color filters, which are like color-tinted glasses. While a standard color filter blocks all wavelengths but one, like yellow- or rose-tinted glasses, the SPHEREx filters are more like rainbow-tinted glasses: The wavelengths they block change gradually from the top of the filter to the bottom.
“I’m rendered speechless,” said Jim Fanson, SPHEREx project manager at JPL. “There was an incredible human effort to make this possible, and our engineering team did an amazing job getting us to this point.”
More About SPHEREx
The SPHEREx mission is managed by JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech managed and integrated the instrument. Data will be processed and archived at IPAC at Caltech. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
For more about SPHEREx, visit:
https://science.nasa.gov/mission/spherex/
News Media Contact
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
2025-045
Share
Details
Last Updated Apr 01, 2025 Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Galaxies Origin & Evolution of the Universe The Search for Life The Universe Explore More
3 min read Discovery Alert: Four Little Planets, One Big Step
The Discovery Four rocky planets much smaller than Earth orbit Barnard’s Star, the next closest…
Article 13 hours ago 5 min read NASA Awards Astrophysics Postdoctoral Fellowships for 2025
The highly competitive NASA Hubble Fellowship Program (NHFP) recently named 24 new fellows to its…
Article 1 day ago 2 min read Hubble Spots a Chance Alignment
The subject of today’s NASA/ESA Hubble Space Telescope image is the stunning spiral galaxy NGC…
Article 4 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Video: 00:06:44 The European Space Agency’s Euclid mission has scouted out the three areas in the sky where it will eventually provide the deepest observations of its mission.
In just one week of observations, with one scan of each region so far, Euclid already spotted 26 million galaxies. The farthest of those are up to 10.5 billion light-years away.
In the coming years, Euclid will pass over these three regions tens of times, capturing many more faraway galaxies, making these fields truly ‘deep’ by the end of the nominal mission in 2030.
The first glimpse of 63 square degrees of the sky, the equivalent area of more than 300 times the full Moon, already gives an impressive preview of the scale of Euclid’s grand cosmic atlas when the mission is complete. This atlas will cover one-third of the entire sky – 14 000 square degrees – in this high-quality detail.
Explore the three deep field previews in ESASky:
- Euclid Deep Field South
- Euclid Deep Field Fornax:
- Euclid Deep Field North:
Read more: Euclid opens data treasure trove, offers glimpse of deep fields
View the full article
-
By NASA
NASA/Nick Hague NASA astronauts Butch Wilmore, Nick Hague, and Suni Williams, and Roscosmos cosmonaut Aleksandr Gorbunov – the members of NASA’s SpaceX Crew-9 mission – smile at the camera in this Feb. 19, 2025, photo. While aboard the International Space Station, Hague, Williams, and Wilmore completed more than 900 hours of research between more than 150 unique scientific experiments and technology demonstrations during their stay aboard the orbiting laboratory.
Wilmore, Hague, Williams, and Gorbunov are set to return to Earth on Tuesday, March 18, with splashdown set for approximately 5:57 p.m. EDT.
Watch NASA’s Crew-9 return coverage at 4:45 p.m. EDT Tuesday on NASA+.
Image credit: NASA/Nick Hague
View the full article
-
By European Space Agency
Europe’s newest rocket, Ariane 6, took flight for the second time from Europe’s Spaceport in French Guiana at 13:24 local time on 6 March (16:24 GMT, 17:24 CET). This was the first commercial flight for Ariane 6, flight VA263, delivering the CSO-3 satellite to orbit. Arianespace was the operator and launch service provider for the French Procurement agency (DGA) and France’s space agency CNES on behalf of the French Air and Space Force’s Space Command (CDE).
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.