Jump to content

NASA Remembers Retired Astronaut, US Air Force Pilot Joe Engle


NASA

Recommended Posts

  • Publishers
s93-41062.jpg?w=2048
Portrait of retired NASA astronaut Joe Engle wearing flight suit in front of an X-15 fighter circa 1963.

Retired NASA astronaut and U.S. Air Force Maj. Gen. Joe Engle died July 10, surrounded by his family at home in Houston. Among his many honors, he is the only astronaut to pilot both the X-15 and space shuttle. He was 91.

Engle became an astronaut at age 32 while flying the X-15 for the U.S. Air Force, becoming the youngest pilot ever to qualify as an astronaut. When selected as a NASA astronaut candidate in 1966, he was the only person selected that was already engaged in spaceflight operations. He was the last surviving X-15 pilot.

“A natural pilot, Gen. Joe Engle helped humanity’s dreams take flight – in the X-15 program, the Apollo Program, and as one of the first commanders in the Space Shuttle Program,” said NASA Administrator Bill Nelson. “He was one of the first astronauts I met at NASA’s Johnson Space Center in Houston. I’ll never forget his big smile, his warmth, and his courage. We all will miss him.” 

Engle was born in Dickinson County, Kansas, and attended the University of Kansas, Lawrence, where he graduated with a degree in Aeronautical Engineering in 1955. He received his commission through the Air Force Reserve Officers Training Course, earning his pilot wings in 1958.

As a NASA astronaut, he supported the Apollo Program, and was backup lunar module pilot for Apollo 14. In 1977, he served as commander of the space shuttle Enterprise, which used a modified Boeing 747 shuttle carrier aircraft to release Enterprise for approach and landing tests. In November 1981, he commanded the second flight of the space shuttle Columbia. He was the first and only pilot to manually fly an aerospace vehicle from Mach 25 to landing. He accumulated the last of his 224 hours in space when he commanded the space shuttle Discovery in August 1985, one of the most challenging shuttle missions ever. On that mission the crew deployed three commercial satellites and retrieved, repaired, and redeployed another malfunctioning satellite that had been launched on a previous shuttle mission.

“As we mourn the immense loss of Joe, we’re thankful for his notable contributions to the advancement of human spaceflight,” said Vanessa Wyche, center director, NASA Johnson. “Joe’s accomplishments and legacy of perseverance will continue to inspire and impact generations of explorers for years to come.” 

Engle flew more than 180 different aircraft types and logged more than 14,000 flight hours. His military decorations include the Department of Defense Distinguished Service Medal, U.S. Air Force Distinguished Service Medal, and the Air Force Distinguished Flying Cross with Oak Leaf Cluster. He has received the NASA Distinguished Service Medal and Space Flight Medal, as well as the Harmon International Aviation Trophy, the Collier Trophy, the Goddard Space Trophy, the Gen.

Thomas D. White Space Trophy, and the Kinchelow Experimental Test Pilot’s Trophy. In 1992, he was inducted into the Aerospace Walk of Honor.

“Joe Henry was a loving husband, father, and grandfather. Blessed with natural piloting skills, General Joe, as he was known to many, was at his happiest in any cockpit. Always with a smile, he lived a fulfilled life as a proud American, U.S. Air Force pilot, astronaut, and Kansas Jayhawk,” said his wife, Jeanie Engle. “His passing leaves a tremendous loss in our hearts. We take comfort that he has joined Tom Stafford and George Abbey, two of the best friends anyone could ask for.”

Learn more about Engle’s life as an astronaut and pilot:

https://www.nasa.gov/aeronautics/the-x-15-the-pilot-and-the-space-shuttle/

-end-

Faith McKie / Cheryl Warner
Headquarters, Washington
202-358-1600
faith.d.mckie@nasa.gov / cheryl.m.warner@nasa.gov

Chelsey Ballarte / Courtney Beasley
Johnson Space Center, Houston
281-483-5111
chelsey.n.ballarte@nasa.gov / courtney.m.beasley@nasa.gov  

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Clean air is essential for healthy living, but according to the World Health Organization (WHO), almost 99% of the global population breathes air exceeding their guideline limits of air pollution. “Air quality is a measure of how much stuff is in the air, which includes particulates and gaseous pollutants,” said Kristina Pistone, a research scientist at NASA Ames Research Center. Pistone’s research covers both atmospheric and climate areas, with a focus on the effect of atmospheric particles on climate and clouds. “It’s important to understand air quality because it affects your health and how well you can live your life and go about your day,” Pistone said. We sat down with Pistone to learn more about air quality and how it can have a noticeable impact on human health and the environment.

      What makes up air quality?

      There are six main air pollutants regulated by the Environmental Protection Agency (EPA) in the United States: particulate matter (PM), nitrogen oxides, ozone, sulfur oxides, carbon monoxide, and lead. These pollutants come from from natural sources, such as the particulate matter that rises into the atmosphere from fires and desert dust, or from human activity, such as the ozone generated from sunlight reacting to vehicle emissions.

      Satellite image showing wildfire smoke drifting down from Canada into the American Midwest, captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on June 09, 2015. NASA/Jeff Schmaltz
      What is the importance of air quality?

      Air quality influences health and quality of life. “Just like we need to ingest water, we need to breathe air,” Pistone said. “We have come to expect clean water because we understand that we need it to live and be healthy, and we should expect the same from our air.”

      Poor air quality has been tied to cardiovascular and respiratory effects in humans. Short-term exposure to nitrogen dioxide (NO2), for example, can cause respiratory symptoms like coughing and wheezing, and long-term exposure increases the risk of developing respiratory diseases such as asthma or respiratory infections. Exposure to ozone can aggravate the lungs and damage the airways. Exposure to PM2.5 (particulates 2.5 micrometers or smaller) causes lung irritation and has been linked to heart and lung diseases.

      In addition to its impacts on human health, poor air quality can damage the environment, polluting bodies of water through acidification and eutrophication. These processes kill plants, deplete soil nutrients, and harm animals.

      Measuring Air Quality: the Air Quality Index (AQI)

      Air quality is similar to the weather; it can change quickly, even within a matter of hours. To measure and report on air quality, the EPA uses the United States Air Quality Index (AQI). The AQI is calculated by measuring each of the six primary air pollutants on a scale from “Good” to “Hazardous,” to produce a combined AQI numeric value 0-500.

      “Usually when we’re talking about air quality, we’re saying that there are things in the atmosphere that we know are not good for humans to be breathing all the time,” Pistone said. “So to have good air quality, you need to be below a certain threshold of pollution.” Localities around the world use different thresholds for “good” air quality, which is often dependent on which pollutants their system measures. In the EPA’s system, an AQI value of 50 or lower is considered good, while 51-100 is considered moderate. An AQI value between 100 and 150 is considered unhealthy for sensitive groups, and higher values are unhealthy to everyone; a health alert is issued when the AQI reaches 200. Any value over 300 is considered hazardous, and is frequently associated with particulate pollution from wildfires.

      NASA Air Quality Research and Data Products

      Air quality sensors are a valuable resource for capturing air quality data on a local level.
      In 2022, the Trace Gas GRoup (TGGR) at NASA Ames Research Center deployed Inexpensive Network Sensor Technology for Exploring Pollution, or INSTEP: a new network of low-cost air quality sensors that measures a variety of pollutants. These sensors are capturing air quality data in certain areas in California, Colorado, and Mongolia, and have proven advantageous for monitoring air quality during California’s fire season.

      The 2024 Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ) mission integrated sensor data from aircraft, satellites, and ground-based platforms to evaluate air quality over several countries in Asia. The data captured from multiple instruments on these flights, such as the Meteorological Measurement System (MMS) from NASA Ames Atmospheric Science Branch, are used to refine air quality models to forecast and assess air quality conditions.

      Agency-wide, NASA has a range of Earth-observing satellites and other technology to capture and report air quality data. In 2023, NASA launched the Tropospheric Emissions: Monitoring of Pollution (TEMPO) mission, which measures air quality and pollution over North America. NASA’s Land, Atmosphere Near real-time Capability for Earth Observations (LANCE) tool provides air quality forecasters with measurements compiled from a multitude of NASA instruments, within three hours of its observation.
      Nitrogen dioxide levels over the D.C./Philadelphia/New York City region measured by TEMPO.NASA/Scientific Visualization Studio

      Air Quality Resources to Learn More

      In addition to the EPA’s website, which houses air-quality related sources, the EPA also has a platform called AirNow, which reports the local AQI across the United States and allows users to check air quality levels in their area. Pistone also recommends looking at Purple Air’s real-time map, which displays PM data taken from a crowd-sourced network of low-cost sensors and translates those measurements to estimate AQI. For those concerned about air quality, Pistone recommends checking out https://cleanaircrew.org/ for resources on indoor air quality, breathing safely with wildfire smoke, and even building your own box fan filter.

      To learn more about air quality research applications, see NASA’s Applied Sciences Program’s Health & Air Quality program area, which details the use of Earth observations to assess and address air quality concerns at local, regional, and national levels. Additionally, the NASA Health and Air Quality Applied Sciences Team (HAQAST) helps connect NASA data and tools with stakeholders to better share and understand the effects of air quality on human health.


      Written by Katera Lee, NASA Ames Research Center
      Share
      Details
      Last Updated Oct 18, 2024 Related Terms
      General Earth Science Earth Science Division Explore More
      4 min read Scientist Profile: Jacquelyn Shuman Blazes New Trails in Fire Science
      Article 16 hours ago 4 min read Navigating Space and Sound: Jesse Bazley Supports Station Integration and Colleagues With Disabilities
      Article 1 day ago 3 min read Sacrifice and Success: NASA Engineer Honors Family Roots
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Environmentalist and former Vice President Al Gore visited NASA’s Goddard Space Flight Center in Greenbelt, Maryland, on Oct. 16, 2024, to commemorate the upcoming 10th anniversary of the DSCOVR (Deep Space Climate Observatory) mission.
      “The image of our Earth from space is the single most compelling iconic image that any of us have ever seen,” Gore said at a panel discussion for employees. “Now we have, thanks to DSCOVR, 50,000 ‘Blue Marble’ photographs … To date there are more than 100 peer-reviewed scientific publications that are based on the unique science gathered at the L1 point by DSCOVR. For all of the scientists who are here and those on the teams that are represented here, I want to say congratulations and thank you.”
      To commemorate the upcoming 10th anniversary of the DSCOVR (Deep Space Climate Observatory) mission, NASA’s Goddard Space Flight Center in Greenbelt, Md., hosted environmentalist and former Vice President Al Gore, shown here addressing a crowd in the Building 3 Harry J. Goett Auditorium, on Oct. 16, 2024.NASA/Travis Wohlrab Following opening remarks from Gore, Goddard scientists participated in a panel discussion entitled “Remote Sensing and the Future of Earth Observations. From left to right: Dalia Kirschbaum, director, NASA Goddard Earth Sciences Division; Miguel Román, deputy director, atmospheres, NASA Goddard Earth Sciences Division; Lesley Ott, project scientist, U.S. Greenhouse Gas Center; John Bolten, chief, NASA Goddard Hydrological Sciences Laboratory.NASA/Travis Wohlrab Gore shakes hands with Kirschbaum following the panel discussion. Goddard Center Director Makenzie Lystrup stands between the two.NASA/Katy Comber Gore visits the overlook for the NASA Goddard clean room where the Roman Space Telescope is being assembled. Julie McEnery, Roman senior project scientist, stands at right.NASA/Katy Comber Christa Peters-Lidard, NASA Goddard’s Sciences and Exploration Directorate director (left), speaks with Gore in the lobby of Building 32, where the former vice president viewed the control room of NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission.NASA/Katy Comber Following Gore’s talk on climate monitoring, Goddard scientists participated in a panel discussion, “Remote Sensing and the Future of Earth Observations,” which explored the latest advancements in technology that allow for the monitoring of the atmosphere from space and showcased how Goddard’s research drives the future of Earth science.
      Gore’s visit also entailed a meeting with the DSCOVR science team, a view into the clean room where Goddard is assembling the Roman Space Telescope, and a stop at the control center for PACE: NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem mission.
      Launched Feb. 11, 2015, DSCOVR is a space weather station that monitors changes in the solar wind, providing space weather alerts and forecasts for geomagnetic storms that could disrupt power grids, satellites, telecommunications, aviation and GPS.
      DSCOVR is a joint mission among NASA, the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Air Force. The project originally was called Triana, a mission conceived of by Gore in 1998 during his vice presidency.
      Share
      Details
      Last Updated Oct 17, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Space Flight Center Deep Space Climate Observatory (DSCOVR) View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s C-130 Hercules is prepared for departure from NASA’s Wallops Flight Facility in Virginia, on October 15, 2024, for a cargo transport mission to India. The C-130 is supporting the NASA-ISRO Synthetic Aperture Radar (NISAR) mission.NASA/Madison Griffin NASA’s globetrotting C-130 Hercules team is carrying out a cargo transport mission to Bengaluru, India, in support of the NASA-ISRO Synthetic Aperture Radar (NISAR) mission.
      The C-130 departed from NASA’s Wallops Flight Facility in Virginia, Tuesday, Oct. 15, to embark on the multi-leg, multi-day journey. The flight path will take the aircraft coast to coast within the United States, across the Pacific Ocean with planned island stops, and finally to its destination in India. The goal: safely deliver NISAR’s radar antennae reflector, one of NASA’s contributions to the mission, for integration on the spacecraft. NISAR is a joint mission between NASA and ISRO (Indian Space Research Organisation).
      The cargo transport mission will encompass approximately 24,500 nautical miles and nearly 80 hours of flight time for the C-130 and crew. The flight plan includes strategic stops and rest days to service the aircraft and reduce crew fatigue from long-haul segments of the flight and multiple time zone changes.
      The flight crew inspects the aircraft prior to departure from NASA Wallops.NASA/Madison Griffin The C-130’s cargo compartment has plenty of space to hold the more than 2,800-pound payload containing the radar antennae reflector once retrieved from California.NASA/Madison Griffin The first stop for the C-130 was March Air Reserve Base located in Riverside County, California, to retrieve the radar antennae reflector from NASA’s Jet Propulsion Laboratory in Southern California. Additional stops during the mission include Hickman Air Force Base, Hawaii; Andersen Air Force Base, Guam; Clark Air Base, Philippines; and Hindustan Aeronautics Limited Airport in Bengaluru, India.
      This is the C-130 and crew’s third cargo transport to India in support of the NISAR mission, with prior flights in July 2023 and March 2024.
      For more information, visit nasa.gov/wallops.
      By Olivia Littleton
      NASA’s Wallops Flight Facility, Wallops Island, Va.
      Share
      Details
      Last Updated Oct 17, 2024 EditorOlivia F. LittletonContactOlivia F. Littletonolivia.f.littleton@nasa.gov Related Terms
      Aeronautics NASA Aircraft Wallops Flight Facility View the full article
    • By NASA
      Due to launch in the early 2030s, NASA’s DAVINCI mission will investigate whether Venus — a sweltering world wrapped in an atmosphere of noxious gases — once had oceans and continents like Earth.
      Consisting of a flyby spacecraft and descent probe, DAVINCI will focus on a mountainous region called Alpha Regio, a possible ancient continent. Though a handful of international spacecraft plunged through Venus’ atmosphere between 1970 and 1985, DAVINCI’s probe will be the first to capture images of this intriguing terrain ever taken from below Venus’ thick and opaque clouds.
      But how does a team prepare for a mission to a planet that hasn’t seen an atmospheric probe in nearly 50 years, and that tends to crush or melt its spacecraft visitors?
      Scientists leading the DAVINCI mission started by using modern data-analysis techniques to pore over decades-old data from previous Venus missions. Their goal is to arrive at our neighboring planet with as much detail as possible. This will allow scientists to most effectively use the probe’s descent time to collect new information that can help answer longstanding questions about Venus’ evolutionary path and why it diverged drastically from Earth’s.
      On the left, a new and more detailed view of Venus’ Alpha Regio region developed by scientists on NASA’s DAVINCI mission to Venus, due to launch in the early 2030s. On the right is a less detailed map created using radar altimeter data collected by NASA’s Magellan spacecraft in the early 1990s. The colors on the maps depict topography, with dark blues identifying low elevations and browns identifying high elevations. To make the map on the left, the DAVINCI science team re-analyzed Magellan data and supplemented it with radar data collected on three occasions from the Arecibo Observatory in Puerto Rico, and used machine vision computer models to scrutinize the data and fill in gaps in information. The red ellipses on each image mark the area DAVINCI’s probe will descend over as it collects data on its way toward the surface. Jim Garvin/NASA’s Goddard Space Flight Center Between 1990 and 1994, NASA’s Magellan spacecraft used radar imaging and altimetry to map the topography of Alpha Regio from Venus’ orbit. Recently, NASA’s DAVINICI’s team sought more detail from these maps, so scientists applied new techniques to analyze Magellan’s radar altimeter data. They then supplemented this data with radar images taken on three occasions from the former Arecibo Observatory in Puerto Rico and used machine vision computer models to scrutinize the data and fill in gaps in information at new scales (less than 0.6 miles, or 1 kilometer).  
      As a result, scientists improved the resolution of Alpha Regio maps tenfold, predicting new geologic patterns on the surface and prompting questions about how these patterns could have formed in Alpha Regio’s mountains.  
      Benefits of Looking Backward
      Old data offers many benefits to new missions, including information about what frequencies, parts of spectrum, or particle sizes earlier instruments covered so that new instruments can fill in the gaps.
      At NASA Space Science Data Coordinated Archive, which is managed out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, staff restore and digitize data from old spacecraft. That vintage data, when compared with modern observations, can show how a planet changes over time, and can even lead to new discoveries long after missions end. Thanks to new looks at Magellan observations, for instance, scientists recently found evidence of modern-day volcanic activity on Venus.
      The three images in this carousel were taken in March 2024 at NASA Space Science Data Coordinated Archive at NASA’s Goddard Space Flight Center in Greenbelt, Md. The first shows stacked boxes of microfilm with data from Apollo missions. The middle image shows miniaturized records from NASA’s 1964 Mariner 4 flyby mission to Mars. And the final image shows a view of Jupiter from NASA’s Pioneer 10 flyby mission to the outer planets, which launched on March 2, 1972. The three images in this carousel were taken in March 2024 at NASA Space Science Data Coordinated Archive at NASA’s Goddard Space Flight Center in Greenbelt, Md. The first shows stacked boxes of microfilm with data from Apollo missions. The middle image shows miniaturized records from NASA’s 1964 Mariner 4 flyby mission to Mars. And the final image shows a view of Jupiter from NASA’s Pioneer 10 flyby mission to the outer planets, which launched on March 2, 1972. The three images in this carousel were taken in March 2024 at NASA Space Science Data Coordinated Archive at NASA’s Goddard Space Flight Center in Greenbelt, Md. The first shows stacked boxes of microfilm with data from Apollo missions. The middle image shows miniaturized records from NASA’s 1964 Mariner 4 flyby mission to Mars. And the final image shows a view of Jupiter from NASA’s Pioneer 10 flyby mission to the outer planets, which launched on March 2, 1972.




      Magellan was among the first missions to be digitally archived in NASA’s publicly accessible online repository of planetary mission data. But the agency has reams of data — much of it not yet digitized — dating back to 1958, when the U.S. launched its first satellite, Explorer 1.
      Data restoration is a complex and resource-intensive job, and NASA prioritizes digitizing data that scientists need. With three forthcoming missions to Venus — NASA’s DAVINCI and VERITAS, plus ESA’s (European Space Agency) Envision — space data archive staff are helping scientists access data from Pioneer Venus, NASA’s last mission to drop probes into Venus’ atmosphere in 1978.
      Mosaic of Venus
      Alpha Regio is one of the most mysterious spots on Venus. Its terrain, known as “tessera,” is similar in appearance to rugged Earth mountains, but more irregular and disorderly.
      So called because they resemble a geometric parquet floor pattern, tesserae have been found only on Venus, and DAVINCI will be the first mission to explore such terrain in detail and to map its topography.
      DAVINCI’s probe will begin photographing Alpha Regio — collecting the highest-resolution images yet — once it descends below the planet’s clouds, starting at about 25 miles, or 40 kilometers, altitude. But even there, gases in the atmosphere scatter light, as does the surface, such that these images will appear blurred.
      Could Venus once have been a habitable world with liquid water oceans — like Earth? This is one of the many mysteries associated with our shrouded sister world. Credit: NASA’s Goddard Space Flight Center DAVINCI scientists are working on a solution. Recently, scientists re-analyzed old Venus imaging data using a new artificial-intelligence technique that can sharpen the images and use them to compute three-dimensional topographic maps. This technique ultimately will help the team optimize DAVINCI’s images and maps of Alpha Regio’s mountains. The upgraded images will give scientists the most detailed view ever — down to a resolution of 3 feet, or nearly 1 meter, per pixel — possibly allowing them to detect small features such as rocks, rivers, and gullies for the first time in history.
      “All this old mission data is part of a mosaic that tells the story of Venus,” said Jim Garvin, DAVINCI principal investigator and chief scientist at NASA Goddard. “A story that is a masterpiece in the making but incomplete.”
      By analyzing the surface texture and rock types at Alpha Regio, scientists hope to determine if Venusian tesserae formed through the same processes that create mountains and certain volcanoes on Earth.
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.

      Get to know Venus

      Share








      Details
      Last Updated Oct 17, 2024 Editor Lonnie Shekhtman Contact Lonnie Shekhtman lonnie.shekhtman@nasa.gov Location Goddard Space Flight Center Related Terms
      DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) Pioneer Venus Planetary Science Planetary Science Division Planets Science & Research Science Mission Directorate The Solar System Venus VERITAS (Venus Emissivity, Radio Science, InSAR, Topography & Spectroscopy) View the full article
    • By NASA
      NASA astronaut and Expedition 72 Flight Engineer Nick Hague in the space station cupola. (Credit: NASA) Students from Iowa will have the opportunity to hear NASA astronaut Nick Hague answer their prerecorded questions while he’s serving an expedition aboard the International Space Station on Monday, Oct. 21.
      Watch the 20-minute space-to-Earth call at 11:40 a.m. EDT on NASA+. Students from Iowa State University in Ames, First Robotics Clubs, World Food Prize Global Youth Institute, and Plant the Moon teams will focus on food production in space. Learn how to watch NASA content on various platforms, including social media.
      Media interested in covering the event must contact Angie Hunt by 5 p.m., Friday, Oct.18 at amhunt@iastate.edu or 515-294-8986.
      For more than 23 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...