Jump to content

Take a Summer Cosmic Road Trip With NASA’s Chandra and Webb


NASA

Recommended Posts

  • Publishers
Cosmic Road Trip: four distinct composite images from NASA's Chandra X-ray Observatory and the James Webb Space Telescope, presented in a two-by-two grid, Rho Ophiuchi at lower right, the heart of the Orion Nebula at upper right, the galaxy NGC 3627 at lower left and the galaxy cluster MACS J0416.
Cosmic Road Trip: four distinct composite images from NASA’s Chandra X-ray Observatory and the James Webb Space Telescope, presented in a two-by-two grid, Rho Ophiuchi at lower right, the heart of the Orion Nebula at upper right, the galaxy NGC 3627 at lower left and the galaxy cluster MACS J0416.
X-ray: NASA/CXC/SAO; Optical/Infrared: (Hubble) NASA/ESA/STScI; IR: (JWST) NASA/ESA/CSA/STScI

It’s time to take a cosmic road trip using light as the highway and visit four stunning destinations across space. The vehicles for this space get-away are NASA’s Chandra X-ray Observatory and James Webb Space Telescope.

The first stop on this tour is the closest, Rho Ophiuchi, at a distance of about 390 light-years from Earth. Rho Ophiuchi is a cloud complex filled with gas and stars of different sizes and ages. Being one of the closest star-forming regions, Rho Ophiuchi is a great place for astronomers to study stars. In this image, X-rays from Chandra are purple revealing infant stars that violently flare and produce X-rays. Infrared data from Webb are red, yellow, cyan, light blue and darker blue and provide views of the spectacular regions of gas and dust.

Rho Ophiuchi, a cloud complex filled with gas, and dotted with stars. The murky green and gold cloud resembles a ghostly head in profile, swooping down from the upper left, trailing tendrils of hair. Cutting across the bottom edge and lower righthand corner of the image is a long, narrow, brick red cloud which resembles the ember of a stick pulled from a fire. Several large white stars dot the image. Many are surrounded by glowing neon purple rings, and gleam with diffraction spikes.
X-ray: NASA/CXC/MIT/C. Canizares; IR: NASA/ESA/CSA/STScI/K. Pontoppidan; Image Processing: NASA/ESA/STScI/Alyssa Pagan, NASA/CXC/SAO/L. Frattare and J. Major

The next destination is the Orion Nebula. Still located in the Milky Way galaxy, this region is a little bit farther from our home planet at about 1,500 light-years away. If you look just below the middle of the three stars that make up the “belt” in the constellation of Orion, you may be able to see this nebula through a small telescope. With Chandra and Webb, however, we get to see so much more. Chandra reveals young stars that glow brightly in X-rays, colored in red, green, and blue, while Webb shows the gas and dust in darker red that will help build the next generation of stars here.

chandrawebb3-m42.jpg?w=2048
X-ray: NASA/CXC/Penn State/E.Fei

It’s time to leave our galaxy and visit another. Like the Milky Way, NGC 3627 is a spiral galaxy that we see at a slight angle. NGC 3627 is known as a “barred” spiral galaxy because of the rectangular shape of its central region. From our vantage point, we can also see two distinct spiral arms that appear as arcs. X-rays from Chandra in purple show evidence for a supermassive black hole in its center while Webb finds the dust, gas, and stars throughout the galaxy in red, green, and blue. This image also contains optical data from the Hubble Space Telescope in red, green, and blue.

The galaxy NGC 3627 appears pitched at an oblique angle, tilted from our upper left down to our lower right. Much of its face is angled toward us, making its spiral arms, composed of red and purple dots, easily identifiable. Several bright white dots ringed with neon purple speckle the galaxy. At the galaxy’s core, where the spiral arms converge, a large white and purple glow identified by Chandra provides evidence of a supermassive black hole.
Spiral galaxy NGC 3627.
X-ray: NASA/CXC/SAO; Optical: NASA/ESO/STScI, ESO/WFI; Infrared: NASA/ESA/CSA/STScI/JWST; Image Processing:/NASA/CXC/SAO/J. Major

Our final landing place on this trip is the farthest and the biggest. MACS J0416 is a galaxy cluster, which are among the largest objects in the Universe held together by gravity. Galaxy clusters like this can contain hundreds or even thousands of individual galaxies all immersed in massive amounts of superheated gas that Chandra can detect. In this view, Chandra’s X-rays in purple show this reservoir of hot gas while Hubble and Webb pick up the individual galaxies in red, green, and blue.

Here is the distant galaxy cluster known as MACS J0416. The blackness of space is packed with glowing dots and tiny shapes, in whites, purples, oranges, golds, and reds, each a distinct galaxy. Upon close inspection (and with a great deal of zooming in!) the spiraling arms of some of the seemingly tiny galaxies are revealed in this highly detailed image. Gently arched across the middle of the frame is a soft band of purple; a reservoir of superheated gas detected by Chandra.
ACS J0416 galaxy cluster.
X-ray: NASA/CXC/SAO/G. Ogrean et al.; Optical/Infrared: (Hubble) NASA/ESA/STScI; IR: (JWST) NASA/ESA/CSA/STScI/Jose M. Diego (IFCA), Jordan C. J. D’Silva (UWA), Anton M. Koekemoer (STScI), Jake Summers (ASU), Rogier Windhorst (ASU), Haojing Yan (University of Missouri)

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit:

https://www.nasa.gov/mission/chandra-x-ray-observatory/

Visual Description:

This release features four distinct composite images from NASA’s Chandra X-ray Observatory and the James Webb Space Telescope, presented in a two-by-two grid.

At our lower right is Rho Ophiuchi, a cloud complex filled with gas, and dotted with stars. The murky green and gold cloud resembles a ghostly head in profile, swooping down from the upper left, trailing tendrils of hair. Cutting across the bottom edge and lower righthand corner of the image is a long, narrow, brick red cloud which resembles the ember of a stick pulled from a fire. Several large white stars dot the image. Many are surrounded by glowing neon purple rings, and gleam with diffraction spikes.

At our upper right of the grid is a peek into the heart of the Orion Nebula, which blankets the entire image. Here, the young star nursery resembles a dense, stringy, dusty rose cloud, peppered with thousands of glowing golden, white, and blue stars. Layers of cloud around the edges of the image, and a concentration of bright stars at its distant core, help convey the depth of the nebula.

In the lower left of the two-by-two grid is a hazy image of a spiral galaxy known as NGC 3627. Here, the galaxy appears pitched at an oblique angle, tilted from our upper left down to our lower right. Much of its face is angled toward us, making its spiral arms, composed of red and purple dots, easily identifiable. Several bright white dots ringed with neon purple speckle the galaxy. At the galaxy’s core, where the spiral arms converge, a large white and purple glow identified by Chandra provides evidence of a supermassive black hole.

At the upper left of the grid is an image of the distant galaxy cluster known as MACS J0416. Here, the blackness of space is packed with glowing dots and tiny shapes, in whites, purples, oranges, golds, and reds, each a distinct galaxy. Upon close inspection (and with a great deal of zooming in!) the spiraling arms of some of the seemingly tiny galaxies are revealed in this highly detailed image. Gently arched across the middle of the frame is a soft band of purple; a reservoir of superheated gas detected by Chandra.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998

Lane Figueroa
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      Sols 4341-4342: A Bumpy Road
      This image was taken by Left Navigation Camera aboard NASA’s Mars rover Curiosity on Sol 4329 — Martian day 4,329 of the Mars Science Laboratory mission — on Oct. 10, 2024, at 05:35:08 UTC. NASA/JPL-Caltech Earth planning date: Monday, Oct. 21, 2024
      After Curiosity’s busy weekend, the team is ready for another day of planning. We are able to take advantage of the Earth-Mars time offset to full plan on both sols of our plan today. For this plan, I served as Mobility Rover Planner, and planned Curiosity’s drive. 
      The first sol begins with some remote science. In this block, there is a ChemCam LIBS and Mastcam joint observation of “Ewe Lake,” to look for variation across the different layers in the rock. There is also a ChemCam RMI and a Mastcam of the “Olmstead Point” target, to see if there are chemical differences that make it darker than the surrounding rocks. Mastcam also is taking a stereo image of “Depressed Lake” (in order to see if this loose block belongs to the Stimson or the Sulfate units) and an image of the ChemCam AEGIS target the rover automatically found after the last drive. 
      After a nap, Curiosity wakes up to do some contact science on the “Chuck Pass” target, which is a piece of bedrock with laminations and nodules. We perform DRT brushing, MAHLI, and APXS observations of this rock before stowing the arm so we can be ready to drive on the second sol. In the late afternoon, to take advantage of the lighting conditions, we have another short set of Mastcam imaging — an atmospheric sky column observation and a stereo mosaic of “Fascination Turret” from this new angle.
      The second sol also kicks off with some remote sensing. We follow up the contact science with ChemCam LIBS and Mastcam of Chuck Pass. ChemCam also takes an RMI looking east back to the area of the white sulfur stones below “Whitebark Pass” to get yet another viewing angle. There is also some atmospheric imaging, Navcam deck monitoring (to see how the dust is moving around on the rover’s deck) and a large dust devil survey. 
      After the imaging, we are ready to drive. This terrain has been very tricky. While the slopes are not steep, this is a very rocky area, as you can see in the image, making finding a safe path difficult. We don’t only need to worry about driving over things that are too big or too sharp, but we also have to make sure not to scrape the wheels along the side of a rock or steer them into a rock, making them wedge and stall. It also means that we do not have good stereo data out very far because the rocks block our view. The last complication is that we have to drive backwards — otherwise, the rover hardware will block Curiosity’s view of Earth during the time we want to send her the new plan. When we drive backwards, the rover hardware will block Curiosity’s view, so we need to turn to get a clear view in our images. We also take additional frames to be sure we can find the best path for the next drive. With all this, we ended up being able to drive about 32 meters today (about 105 feet). After a short diversion to get around a steering hazard, we were able to drive a fairly straight route along the path to our next major imaging stop. After the drive, we have our normal post-drive imaging, including a twilight MARDI image. 
      We have been lucky so far on this terrain and been able to successfully complete our recent drives. Hopefully this drive will also be successful!
      Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory
      Image Download Share








      Details
      Last Updated Oct 24, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4338-4340: Decisions, Decisions


      Article


      2 days ago
      2 min read Sols 4336-4337: Where the Streets Have No Name


      Article


      7 days ago
      2 min read Just Keep Roving
      Throughout the past week, Perseverance has continued marching up the Jezero crater rim. This steep…


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA/Jamie Peer In this image from Oct. 3, 2024, NASA’s mobile launcher 1 makes its way back to the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, after undergoing upgrades and tests in preparation for the agency’s Artemis II mission.
      Artemis II is the first crewed mission on NASA’s path to establishing a long-term presence at the Moon for science and exploration through Artemis. Artemis II will send four astronauts around the Moon, testing NASA’s foundational human deep space exploration capabilities, the SLS rocket, and Orion spacecraft.
      Image credit: NASA/Jamie Peer
      View the full article
    • By NASA
      Due to launch in the early 2030s, NASA’s DAVINCI mission will investigate whether Venus — a sweltering world wrapped in an atmosphere of noxious gases — once had oceans and continents like Earth.
      Consisting of a flyby spacecraft and descent probe, DAVINCI will focus on a mountainous region called Alpha Regio, a possible ancient continent. Though a handful of international spacecraft plunged through Venus’ atmosphere between 1970 and 1985, DAVINCI’s probe will be the first to capture images of this intriguing terrain ever taken from below Venus’ thick and opaque clouds.
      But how does a team prepare for a mission to a planet that hasn’t seen an atmospheric probe in nearly 50 years, and that tends to crush or melt its spacecraft visitors?
      Scientists leading the DAVINCI mission started by using modern data-analysis techniques to pore over decades-old data from previous Venus missions. Their goal is to arrive at our neighboring planet with as much detail as possible. This will allow scientists to most effectively use the probe’s descent time to collect new information that can help answer longstanding questions about Venus’ evolutionary path and why it diverged drastically from Earth’s.
      On the left, a new and more detailed view of Venus’ Alpha Regio region developed by scientists on NASA’s DAVINCI mission to Venus, due to launch in the early 2030s. On the right is a less detailed map created using radar altimeter data collected by NASA’s Magellan spacecraft in the early 1990s. The colors on the maps depict topography, with dark blues identifying low elevations and browns identifying high elevations. To make the map on the left, the DAVINCI science team re-analyzed Magellan data and supplemented it with radar data collected on three occasions from the Arecibo Observatory in Puerto Rico, and used machine vision computer models to scrutinize the data and fill in gaps in information. The red ellipses on each image mark the area DAVINCI’s probe will descend over as it collects data on its way toward the surface. Jim Garvin/NASA’s Goddard Space Flight Center Between 1990 and 1994, NASA’s Magellan spacecraft used radar imaging and altimetry to map the topography of Alpha Regio from Venus’ orbit. Recently, NASA’s DAVINICI’s team sought more detail from these maps, so scientists applied new techniques to analyze Magellan’s radar altimeter data. They then supplemented this data with radar images taken on three occasions from the former Arecibo Observatory in Puerto Rico and used machine vision computer models to scrutinize the data and fill in gaps in information at new scales (less than 0.6 miles, or 1 kilometer).  
      As a result, scientists improved the resolution of Alpha Regio maps tenfold, predicting new geologic patterns on the surface and prompting questions about how these patterns could have formed in Alpha Regio’s mountains.  
      Benefits of Looking Backward
      Old data offers many benefits to new missions, including information about what frequencies, parts of spectrum, or particle sizes earlier instruments covered so that new instruments can fill in the gaps.
      At NASA Space Science Data Coordinated Archive, which is managed out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, staff restore and digitize data from old spacecraft. That vintage data, when compared with modern observations, can show how a planet changes over time, and can even lead to new discoveries long after missions end. Thanks to new looks at Magellan observations, for instance, scientists recently found evidence of modern-day volcanic activity on Venus.
      The three images in this carousel were taken in March 2024 at NASA Space Science Data Coordinated Archive at NASA’s Goddard Space Flight Center in Greenbelt, Md. The first shows stacked boxes of microfilm with data from Apollo missions. The middle image shows miniaturized records from NASA’s 1964 Mariner 4 flyby mission to Mars. And the final image shows a view of Jupiter from NASA’s Pioneer 10 flyby mission to the outer planets, which launched on March 2, 1972. The three images in this carousel were taken in March 2024 at NASA Space Science Data Coordinated Archive at NASA’s Goddard Space Flight Center in Greenbelt, Md. The first shows stacked boxes of microfilm with data from Apollo missions. The middle image shows miniaturized records from NASA’s 1964 Mariner 4 flyby mission to Mars. And the final image shows a view of Jupiter from NASA’s Pioneer 10 flyby mission to the outer planets, which launched on March 2, 1972. The three images in this carousel were taken in March 2024 at NASA Space Science Data Coordinated Archive at NASA’s Goddard Space Flight Center in Greenbelt, Md. The first shows stacked boxes of microfilm with data from Apollo missions. The middle image shows miniaturized records from NASA’s 1964 Mariner 4 flyby mission to Mars. And the final image shows a view of Jupiter from NASA’s Pioneer 10 flyby mission to the outer planets, which launched on March 2, 1972.




      Magellan was among the first missions to be digitally archived in NASA’s publicly accessible online repository of planetary mission data. But the agency has reams of data — much of it not yet digitized — dating back to 1958, when the U.S. launched its first satellite, Explorer 1.
      Data restoration is a complex and resource-intensive job, and NASA prioritizes digitizing data that scientists need. With three forthcoming missions to Venus — NASA’s DAVINCI and VERITAS, plus ESA’s (European Space Agency) Envision — space data archive staff are helping scientists access data from Pioneer Venus, NASA’s last mission to drop probes into Venus’ atmosphere in 1978.
      Mosaic of Venus
      Alpha Regio is one of the most mysterious spots on Venus. Its terrain, known as “tessera,” is similar in appearance to rugged Earth mountains, but more irregular and disorderly.
      So called because they resemble a geometric parquet floor pattern, tesserae have been found only on Venus, and DAVINCI will be the first mission to explore such terrain in detail and to map its topography.
      DAVINCI’s probe will begin photographing Alpha Regio — collecting the highest-resolution images yet — once it descends below the planet’s clouds, starting at about 25 miles, or 40 kilometers, altitude. But even there, gases in the atmosphere scatter light, as does the surface, such that these images will appear blurred.
      Could Venus once have been a habitable world with liquid water oceans — like Earth? This is one of the many mysteries associated with our shrouded sister world. Credit: NASA’s Goddard Space Flight Center DAVINCI scientists are working on a solution. Recently, scientists re-analyzed old Venus imaging data using a new artificial-intelligence technique that can sharpen the images and use them to compute three-dimensional topographic maps. This technique ultimately will help the team optimize DAVINCI’s images and maps of Alpha Regio’s mountains. The upgraded images will give scientists the most detailed view ever — down to a resolution of 3 feet, or nearly 1 meter, per pixel — possibly allowing them to detect small features such as rocks, rivers, and gullies for the first time in history.
      “All this old mission data is part of a mosaic that tells the story of Venus,” said Jim Garvin, DAVINCI principal investigator and chief scientist at NASA Goddard. “A story that is a masterpiece in the making but incomplete.”
      By analyzing the surface texture and rock types at Alpha Regio, scientists hope to determine if Venusian tesserae formed through the same processes that create mountains and certain volcanoes on Earth.
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.

      Get to know Venus

      Share








      Details
      Last Updated Oct 17, 2024 Editor Lonnie Shekhtman Contact Lonnie Shekhtman lonnie.shekhtman@nasa.gov Location Goddard Space Flight Center Related Terms
      DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) Pioneer Venus Planetary Science Planetary Science Division Planets Science & Research Science Mission Directorate The Solar System Venus VERITAS (Venus Emissivity, Radio Science, InSAR, Topography & Spectroscopy) View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This mosaic from ESA’s Euclid space telescope contains 260 observations in visible and infrared light. It covers 132 square degrees, or more than 500 times the area of the full Moon, and is 208 gigapixels. This is 1% of the wide survey that Euclid will capture during its six-year mission.ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO This section of the Euclid mosaic is zoomed in 36 times, revealing the core of galaxy cluster Abell 3381, 470 million light-years from Earth. The image, made using both visible and infrared light, shows galaxies of different shapes and sizes, including elliptical, spiral, and dwarf galaxies.ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO This image shows an area of the Euclid mosaic zoomed in 150 times. The combination of visible and infrared light reveals galaxies that are interacting with each other in cluster Abell 3381, 470 million light-years away from Earth. ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO The location and actual size of the newly released Euclid mosaic is highlighted in yellow on a map of the entire sky captured by ESA’s Planck mission and a star map from ESA’s Gaia mission. ESA/Euclid/Euclid Consortium/NASA; ESA/Gaia/DPAC; ESA and the Planck Collaboration. CC BY-SA 3.0 IGO With contributions from NASA, the mission will map a third of the sky in order to study a cosmic mystery called dark energy.
      ESA (the European Space Agency) has released a new, 208-gigapixel mosaic of images taken by Euclid, a mission with NASA contributions that launched in 2023 to study why the universe is expanding at an accelerating rate. Astronomers use the term “dark energy” in reference to the unknown cause of this accelerated expansion.
      The new images were released at the International Astronautical Congress in Milan on Oct. 15.
      The mosaic contains 260 observations in visible and infrared light made between March 25 and April 8 of this year. In just two weeks, Euclid covered 132 square degrees of the southern sky — more than 500 times the area of the sky covered by a full Moon.
      The mosaic accounts for 1% of the wide survey Euclid will conduct over six years. During this survey, the telescope observes the shapes, distances, and motions of billions of galaxies out to a distance of more than 10 billion light-years. By doing this, it will create the largest 3D cosmic map ever made.
      https://www.youtube.com/watch?v=86ZCsUfgLRQ Dive into a snippet of the great cosmic atlas being produced by the ESA Euclid mission. This video zooms in on a 208-gigapixel mosaic containing about 14 million galaxies and covering a portion of the southern sky more than 500 times the area of the full Moon as seen from Earth. Credit: ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi; ESA/Gaia/DPAC; ESA/Planck Collaboration This first piece of the map already contains around 100 million stars and galaxies. Some 14 million of these galaxies could be used by Euclid to study the hidden influence of dark energy on the universe.
      “We have already seen beautiful, high-resolution images of individual objects and groups of objects from Euclid. This new image finally gives us a taste of the enormity of the area of sky Euclid will cover, which will enable us to take detailed measurements of billions of galaxies,” said Jason Rhodes, an observational cosmologist at NASA’s Jet Propulsion Laboratory in Southern California who is the U.S. science lead for Euclid and principal investigator for NASA’s Euclid dark energy science team.
      Galaxies Galore
      Even though this patch of space shows only 1% of Euclid’s total survey area, the spacecraft’s sensitive cameras captured an incredible number of objects in great detail. Enlarging the image by a factor of 600 reveals the intricate structure of a spiral galaxy in galaxy cluster Abell 3381, 470 million light-years away.
      This section of the Euclid mosaic is zoomed in 600 times. A single spiral galaxy is visible in great detail within cluster Abell 3381, 470 million light-years away from us. Data from both the visible and infrared light instruments on Euclid are included. ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO “What really strikes me about these new images is the tremendous range in physical scale,” said JPL’s Mike Seiffert, project scientist for the NASA contribution to Euclid. “The images capture detail from clusters of stars near an individual galaxy to some of the largest structures in the universe. We are beginning to see the first hints of what the full Euclid data will look like when it reaches the completion of the prime survey.”
      Visble as well are clouds of gas and dust located between the stars in our own galaxy. Sometimes called “galactic cirrus” because they look like cirrus clouds at Earth, these clouds can be observed by Euclid’s visible-light camera because they reflect visible light from the Milky Way.
      The mosaic released today is taste of what’s to come from Euclid. The mission plans to release 53 square degrees of the Euclid survey, including a preview of the Euclid Deep Field areas, in March 2025 and to release its first year of cosmology data in 2026.
      NASA’s forthcoming Nancy Grace Roman mission will also study dark energy — in ways that are complementary to Euclid. Mission planners will use Euclid’s findings to inform Roman’s dark energy work. Scheduled to launch by May 2027, Roman will study a smaller section of sky than Euclid but will provide higher-resolution images of millions of galaxies and peer deeper into the universe’s past, providing complementary information. In addition, Roman will survey nearby galaxies, find and investigate planets throughout our galaxy, study objects on the outskirts of our solar system, and more.
      More About Euclid
      Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium — consisting of more than 2,000 scientists from 300 institutes in 15 European countries, the United States, Canada, and Japan — is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.
      Three NASA-supported science teams contribute to the Euclid mission. In addition to designing and fabricating the sensor-chip electronics for Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument, JPL led the procurement and delivery of the NISP detectors as well. Those detectors, along with the sensor chip electronics, were tested at NASA’s Detector Characterization Lab at Goddard Space Flight Center in Greenbelt, Maryland. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech in Pasadena, California, will archive the science data and support U.S.-based science investigations. JPL is a division of Caltech.
      For more information about Euclid go to:
      https://www.nasa.gov/mission_pages/euclid/main/index.html
      For more information about Roman, go to:
      https://roman.gsfc.nasa.gov
      News Media Contacts
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      ESA Media Relations
      media@esa.int
      2024-141
      Share
      Details
      Last Updated Oct 15, 2024 Related Terms
      Euclid Astrophysics Dark Energy Dark Matter Galaxies Jet Propulsion Laboratory The Universe Explore More
      8 min read Revealing the Hidden Universe with Full-shell X-ray Optics at NASA MSFC
      The study of X-ray emission from astronomical objects reveals secrets about the Universe at the…
      Article 2 hours ago 5 min read Journey to a Water World: NASA’s Europa Clipper Is Ready to Launch
      Article 2 days ago 6 min read Can Life Exist on an Icy Moon? NASA’s Europa Clipper Aims to Find Out
      Article 3 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      On 15 October 2024, ESA’s Euclid space mission reveals the first piece of its great map of the Universe, showing millions of stars and galaxies.
      View the full article
  • Check out these Videos

×
×
  • Create New...