Jump to content

Voyagers of Mars: The First CHAPEA Crew’s Yearlong Journey 


NASA

Recommended Posts

  • Publishers

When the first humans travel to the Red Planet, they will need to know how to repair and maintain equipment, grow their own food, and stay healthy, all while contending with Earth-to-Mars communication delays. They must also find ways to build comradery and have fun. 

The first all-volunteer CHAPEA (Crew Health and Performance Exploration Analog) crew accomplished all of that and more during their 378-day analog mission on the surface of Mars.  

Living in the isolated Mars Dune Alpha, a 3D-printed, 1,700-square-foot habitat, crew members Kelly Haston, Ross Brockwell, Nathan Jones, and Anca Selariu faced the rigors of a simulated Mars expedition, enduring stressors akin to those of a real mission to the Red Planet. They also celebrated holidays and birthdays, gave each other haircuts, and found moments of levity in isolation. Their journey will help scientists understand the challenges of deep space missions and offer invaluable insights into the resilience of the human spirit. 

A woman in a black NASA jumpsuit is shaking hands with a man in a blue NASA astronaut suit. Another man in a blue suit is clapping. They are standing at the entrance of a building with NASA logos and other mission patches on the wall.
NASA’s CHAPEA (Crew Health and Performance Exploration Analog) crew member Kelly Haston greets Deputy Director of Flight Operations Kjell Lindgren and Johnson Space Center Deputy Director Stephen Koerner at the habitat’s door.
NASA/Josh Valcarcel

As the crew concluded their journey on July 6, NASA astronaut and Deputy Director of Flight Operations Kjell Lindgren opened the habitat door and welcomed them home. 

“The crew and their families have committed a year of their lives in service to NASA, the country, and humanity’s exploration of space. Thank you to for committing yourselves to research that will enable our future exploration of space,” he said. “Your fingerprints are going to be an indelible part of those first footprints on Mars.” 

The CHAPEA crew brought their diverse backgrounds and experiences to the mission, collaborating with NASA’s scientists and engineers to collect data that will provide insight into maintaining crew health and performance for future missions to Mars. 

Four people in black NASA jumpsuits are standing in front of a building with NASA logos and mission patches on the wall. They are smiling and holding mission patches, posing for a group photo.
PHOTO DATE: July 06, 2024 LOCATION: Bldg. 220 – CHAPEA Habitat SUBJECT: ASA Crew Health and Performance Exploration Analog (CHAPEA) Mars Analog Mission 1 Egress Event with crew Anca Selariu, Nathan Jones, Kelly Haston, Ross Brockwell. PHOTOGRAPHER: NASA/Josh Valcarcel
NASA/Josh Valcarcel

Kelly Haston: Mission Commander and Pioneering Scientist 

Haston, the mission commander, is a research scientist who builds human disease models. She has spearheaded innovative stem cell-based projects, deriving multiple cell types for work in infertility, liver disease, and neurodegeneration. Her role was pivotal in maintaining crew morale and ensuring the success of daily operations. 

She highlighted the importance of teamwork and adaptability in a mission with such high stakes.

“We had to rely on each other and our training to navigate the challenges we faced,” she said. “Every day brought new obstacles, but also new opportunities for growth and learning.” 

Nathan Jones: Medical Officer and Expert Communicator 

Jones, the crew medical officer, used his emergency and international medicine experience to tackle the unique challenges of the Mars mission. His expertise in problem-solving and effective communication in a time-sensitive and resource-limited environment was essential due to the approximately one-hour transmission delay. “Even something as simple as when to communicate is important,” said Jones. The crew had to consider what observations were essential to report to each other or Mission Control to avoid overburdening the team or unnecessarily using the limited bandwidth to Earth. 

“Everything we do in CHAPEA is touched by the heroes working on the ground at NASA,” he said. “We couldn’t ask for a better experience or better people to work with.” 

The experience evolved into a journey of personal growth for Jones. “I am constantly looking forward, planning for the future,” he said. “I learned to take time to enjoy the current season and be patient for the coming ones.” 

He also discovered a new hobby: art. “I have even surprised myself with how well some of my sketches have turned out,” he said. 

Anca Selariu: Microbiologist and Innovative Thinker 

Anca Selariu brought expertise as a microbiologist in the U.S. Navy, with a background in viral vaccine discovery, prion transmission, gene therapy development, and infectious disease research management. 

Selariu expressed that she owes much to the Navy, including her involvement in CHAPEA, as it helped shape her both personally and professionally. “I hope to bring back a fresh perspective, along with a strong inclination to think differently about a problem, and test which questions are worth asking before we set out answering them,” she said.  

Reflecting on the mission, Selariu said, “Every day seemed to be a new revelation about something; about Earth, about art, about humans, about cultures, about the history of life in the universe – what little we know of it.” 

She added, “As much as I appreciate having information at my fingertips, I will miss the luxury of being unplugged in a world that now validates humans by their digital presence.”  

Ross Brockwell: Structural Engineer and Problem Solver 

Brockwell, the mission’s flight engineer, focused on infrastructure, building design, and organizational leadership. His structural engineering background influenced his approach to problem solving in the CHAPEA habitat. 

“An engineering perspective leads you to build an understanding of how things will react and interact, anticipate possible failure points, and ensure redundancy and contingency planning,” he said. 

That mindset helped the crew develop creative solutions to mission challenges, such as using a 3D printer to design part adapters and tools and find ways to connect as a team. “Several things we wanted to do for fun required innovation, one being developing a bracket so we could safely and securely mount our mini-basketball hoop,” he said. 

He advises Artemis Generation members interested in contributing to future analog missions to think about systems engineering theory and learn to develop and integrate whole systems while solving individual challenges.  

Brockwell believes the most important attributes for a CHAPEA crew member are imagination and a strong sense of wonder. “Of course, one needs to have patience, self-control, emotional regulation, and a sense of humor,” he said. “I would also add perspective, which means understanding the importance of exploration missions on behalf of humankind and appreciating being part of something greater than oneself.” 

Four people wearing black NASA jumpsuits are standing in front of a white van with a CHAPEA mission logo. The individuals are wearing sunglasses and caps, and the background shows industrial equipment and power lines.
The CHAPEA crew is “back on Earth” after their 378-day mission inside the simulated Martian habitat.
NASA /Josh Valcarcel

A Vision for the Future 

As the first CHAPEA mission concludes, the data collected and experiences shared by the crew will pave the way for future explorations, bringing humanity one step closer to setting foot on Mars.  

“One of the biggest things I have learned on this long-duration mission is that we should never underestimate the effects of small gains over time,” said Jones. “Be willing to do the hard things now and it may make all the difference for the future.” 

Selariu emphasized the importance of interdisciplinary collaboration in upcoming space missions. “What everyone at CHAPEA seems to have in common is passion for space and drive to pursue it no matter the challenges, inconvenience, and personal sacrifices.” 

Brockwell looks forward to missions to the Red Planet becoming a reality. “It still fills me with awe and excitement to think that one day there will be people on the surface of other worlds, overcoming immense challenges and expanding the existence and awareness of life from Earth.” 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4368-4369: The Colors of Fall – and Mars
      This image shows all the textures — no color in ChemCam remote-imager images, though — that the Martian terrain has to offer. This image was taken by Chemistry & Camera (ChemCam) aboard NASA’s Mars rover Curiosity on Nov. 18, 2024 — sol 4367, or Martian day 4,367 of the Mars Science Laboratory mission — at 02:55:09 UTC. NASA/JPL-Caltech/LANL Earth planning date: Monday, Nov. 18, 2024
      I am in the U.K., where we are approaching the time when trees are just branches and twigs. One tree that still has its full foliage is my little quince tree in my front garden. Its leaves have turned reddish-brown with a hint of orange, fairly dark by now, and when I passed it this afternoon on my way to my Mars operations shift, I thought that these leaves have exactly the colors of Mars! And sure enough, today’s workspace is full of bedrock blocks in the beautiful reddish-brown that we love from Mars. But like that tree, it’s not just one color, but many different versions and patterns, all of many reddish-brown and yellowish-brown colors.
      The tree theme continues into the naming of our targets today, with ChemCam observing the target “Big Oak Flat,” which is a flat piece of bedrock with a slightly more gray hue to it. “Calaveras,” in contrast, looks a lot more like my little tree, as it is more reddish and less gray. It’s also a bedrock target, and APXS and MAHLI are observing this target, too. APXS has another bedrock target, called “Murphys” on one of the many bedrock pieces around. MAHLI is of course documenting Murphys, too. Let’s just hope that this target name doesn’t get any additions to it but instead returns perfect data from Mars!
      ChemCam is taking several long-distance remote micro-imager images — one on the Gediz Vallis Ridge, and one on target “Mono Lake,” which is also looking at the many, many different textures and stones in our surroundings. The more rocks, the more excited a team of geologists gets! So, we are surely using every opportunity to take images here!
      Talking about images… Mastcam is taking documentation images on the Big Oak Flat and Calaveras targets, and a target simply called “trough.” In addition, there are mosaics on “Basket Dome” and “Chilkoot,” amounting to quite a few images of this diverse and interesting terrain! More images will be taken by the navigation cameras for the next drive — and also our Hazcam. We rarely talk about the Hazcams, but they are vital to our mission! They look out from just under the rover belly, forward and backward, and have the important task to keep our rover safe. The forward-looking one is also great for planning purposes, to know where the arm can reach with APXS, MAHLI, and the drill. To me, it’s also one of the most striking perspectives, and shows the grandeur of the landscape so well. If you want to see what I am talking about, have a look at “A Day on Mars” from January of this year.
      Of course, we have atmospheric measurements in the plan, too. The REMS sensor is measuring temperature and wind throughout the plan, and Curiosity will be taking observations to search for dust devils, and look at the opacity of the atmosphere. Add DAN to the plan, and it is once again a busy day for Curiosity on the beautifully red and brown Mars. And — hot off the press — all about another color on Mars: yellowish-white!
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Nov 20, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)


      Article


      2 days ago
      2 min read Sols 4362-4363: Plates and Polygons


      Article


      1 week ago
      3 min read Peculiar Pale Pebbles
      During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      5 Min Read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      A NASA study using a series of supercomputer simulations reveals a potential new solution to a longstanding Martian mystery: How did Mars get its moons? The first step, the findings say, may have involved the destruction of an asteroid. 
      The research team, led by Jacob Kegerreis, a postdoctoral research scientist at NASA’s Ames Research Center in California’s Silicon Valley, found that an asteroid passing near Mars could have been disrupted – a nice way of saying “ripped apart” – by the Red Planet’s strong gravitational pull.
      The team’s simulations show the resulting rocky fragments being strewn into a variety of orbits around Mars. More than half the fragments would have escaped the Mars system, but others would’ve stayed in orbit. Tugged by the gravity of both Mars and the Sun, in the simulations some of the remaining asteroid pieces are set on paths to collide with one another, every encounter further grinding them down and spreading more debris. 
      Many collisions later, smaller chunks and debris from the former asteroid could have settled into a disk encircling the planet. Over time, some of this material is likely to have clumped together, possibly forming Mars’ two small moons, Phobos and Deimos.
      To assess whether this was a realistic chain of events, the research team explored hundreds of different close encounter simulations, varying the asteroid’s size, spin, speed, and distance at its closest approach to the planet. The team used their high-performance, open-source computing code, called SWIFT, and the advanced computing systems at Durham University in the United Kingdom to study in detail both the initial disruption and, using another code, the subsequent orbits of the debris.
      In a paper published Nov. 20 in the journal Icarus, the researchers report that, in many of the scenarios, enough asteroid fragments survive and collide in orbit to serve as raw material to form the moons. 
      “It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s,” said Kegerreis. “Furthermore, this new model makes different predictions about the moons’ properties that can be tested against the standard ideas for this key event in Mars’ history.”
      Two hypotheses for the formation of the Martian moons have led the pack. One proposes that passing asteroids were captured whole by Mars’ gravity, which could explain the moons’ somewhat asteroid-like appearance. The other says that a giant impact on the planet blasted out enough material – a mix of Mars and impactor debris – to form a disk and, ultimately, the moons. Scientists believe a similar process formed Earth’s Moon.
      The latter explanation better accounts for the paths the moons travel today – in near-circular orbits that closely align with Mars’ equator. However, a giant impact ejects material into a disk that, mostly, stays close to the planet. And Mars’ moons, especially Deimos, sit quite far away from the planet and probably formed out there, too. 
      “Our idea allows for a more efficient distribution of moon-making material to the outer regions of the disk,” said Jack Lissauer, a research scientist at Ames and co-author on the paper. “That means a much smaller ‘parent’ asteroid could still deliver enough material to send the moons’ building blocks to the right place.”
      It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s.
      Jacob Kegerreis
      Postdoctoral research scientist at NASA’s Ames Research Center
      Testing different ideas for the formation of Mars’ moons is the primary goal of the upcoming Martian Moons eXploration (MMX) sample return mission led by JAXA (Japan Aerospace Exploration Agency). The spacecraft will survey both moons to determine their origin and collect samples of Phobos to bring to Earth for study. A NASA instrument on board, called MEGANE – short for Mars-moon Exploration with GAmma rays and Neutrons – will identify the chemical elements Phobos is made of and help select sites for the sample collection. Some of the samples will be collected by a pneumatic sampler also provided by NASA as a technology demonstration contribution to the mission. Understanding what the moons are made of is one clue that could help distinguish between the moons having an asteroid origin or a planet-plus-impactor source.
      Before scientists can get their hands on a piece of Phobos to analyze, Kegerreis and his team will pick up where they left off demonstrating the formation of a disk that has enough material to make Phobos and Deimos. 
      “Next, we hope to build on this proof-of-concept project to simulate and study in greater detail the full timeline of formation,” said Vincent Eke, associate professor at the Institute for Computational Cosmology at Durham University and a co-author on the paper. “This will allow us to examine the structure of the disk itself and make more detailed predictions for what the MMX mission could find.”  
      For Kegerreis, this work is exciting because it also expands our understanding of how moons might be born – even if it turns out that Mars’ own formed by a different route. The simulations offer a fascinating exploration, he says, of the possible outcomes of encounters between objects like asteroids and planets. These events were common in the early solar system, and simulations could help researchers reconstruct the story of how our cosmic backyard evolved. 
      This research is a collaborative effort between Ames and Durham University, supported by the Institute for Computational Cosmology’s Planetary Giant Impact Research group. The simulations used were run using the open-source SWIFT code, carried out on the DiRAC (Distributed Research Utilizing Advanced Computing) Memory Intensive service (“COSMA”), hosted by Durham University on behalf of the DiRAC High-Performance Computing facility.
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Mars Ames Research Center Ames Research Center's Science Directorate General High-Tech Computing Mars Moons Martian Moon Exploration (MMX) Missions NASA Centers & Facilities Planets Technology The Solar System Explore More
      5 min read NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
      After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever…
      Article 1 hour ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 2 hours ago 2 min read About the Office of the Chief Knowledge Officer (OCKO)
      Article 6 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:04:30 Explore the immense power of water as ESA’s Mars Express takes us on a flight over curving channels, streamlined islands and muddled ‘chaotic terrain’ on Mars, soaking up rover landing sites along the way.
      This beautiful flight around the Oxia Palus region of Mars covers a total area of approximately 890 000 km2, more than twice the size of Germany. Central to the tour is one of Mars’s largest outflow channels, Ares Vallis. It stretches for more than 1700 km2 and cascades down from the planet’s southern highlands to enter the lower-lying plains of Chryse Planitia.
      Billions of years ago, water surged through Ares Vallis, neighbouring Tiu Vallis, and numerous other smaller channels, creating many of the features observed in this region today.
      Enjoy the flight!
      After enjoying a spectacular global view of Mars we focus in on the area marked by the white rectangle. Our flight starts over the landing site of NASA’s Pathfinder mission, whose Sojourner rover explored the floodplains of Ares Vallis for 12 weeks in 1997. 
      Continuing to the south, we pass over two large craters named Masursky and Sagan. The partially eroded crater rim of Masursky in particular suggests that water once flowed through it, from nearby Tiu Vallis.
      The Masurky Crater is filled with jumbled blocks, and you can see many more as we turn north to Hydaspis Chaos. This ‘chaotic terrain’ is typical of regions influenced by massive outflow channels. Its distinctive muddled appearance is thought to arise when subsurface water is suddenly released from underground to the surface. The resulting loss of support from below causes the surface to slump and break into blocks of various sizes and shapes.
      Just beyond this chaotic array of blocks is Galilaei crater, which has a highly eroded rim and a gorge carved between the crater and neighbouring channel. It is likely that the crater once contained a lake, which flooded out into the surroundings. Continuing on, we see streamlined islands and terraced river banks, the teardrop-shaped island ‘tails’ pointing in the downstream direction of the water flow at the time.
      Crossing over Ares Vallis again, the flight brings us to the smoother terrain of Oxia Planum and the planned landing site for ESA’s ExoMars Rosalind Franklin rover. The primary goal of the mission is to search for signs of past or present life on Mars, and as such, this once water-flooded region is an ideal location.
      Zooming out, the flight ends with a stunning bird’s-eye view of Ares Vallis and its fascinating  water-enriched neighbourhood. 
      Disclaimer: This video is not representative of how Mars Express flies over the surface of Mars. See processing notes below.
      How the movie was made
      This film was created using the Mars Express High Resolution Stereo Camera Mars Chart (HMC30) data, an image mosaic made from single orbit observations of the High Resolution Stereo Camera (HRSC). The mosaic, centred at 12°N/330°E, is combined with topography information from the digital terrain model to generate a three-dimensional landscape. 
      For every second of the movie, 50 separate frames are rendered following a predefined camera path in the scene. A three-fold vertical exaggeration has been applied. Atmospheric effects such as clouds and haze have been added to conceal the limits of the terrain model. The haze starts building up at a distance of 300 km. 
      The HRSC camera on Mars Express is operated by the German Aerospace Center (DLR). The systematic processing of the camera data took place at the DLR Institute for Planetary Research in Berlin-Adlershof. The working group of Planetary Science and Remote Sensing at Freie Universität Berlin used the data to create the film.
      View the full article
    • By European Space Agency
      Video: 00:04:31 The double-satellite Proba-3 is the most ambitious member yet of ESA’s Proba family of experimental missions. Two spacecraft will fly together as one, maintaining precise formation down to a single millimetre. One will block out the fiery disc of the Sun for the other, to enable prolonged observations of the Sun’s surrounding atmosphere, or ‘corona’, the source of the solar wind and space weather. Usually, the corona can only be glimpsed for a few minutes during terrestrial total solar eclipses. Proba-3 aims to reproduce such eclipses for up to six hours at a time, in a highly elliptical orbit taking it more than 60 000 km from Earth. The two spacecraft are being launched together by India’s PSLV-XL launcher from the Satish Dhawan Space Centre. Follow the mission’s deployment and commissioning, up to its first glimpse of the corona, in this overview video.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)
      NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on Nov. 14, 2024 — sol 4363, or Martian day 4,363 of the Mars Science Laboratory mission – at 02:55:34 UTC. NASA/JPL-Caltech Earth planning date: Friday, Nov. 15, 2024
      The Monday plan and drive had executed successfully, so the team had high hopes for APXS and MAHLI data on several enticing targets in the rover’s workspace. Alas, it was not to be: The challenging terrain had resulted in an awkwardly perched wheel at the end of the drive, so we couldn’t risk deploying the arm from this position. Maybe next drive!
      We did plan a busy weekend of non-arm science activities regardless. Due to a “soliday” the weekend has two sols instead of three, but we had enough power available to fit in more than three hours of observations. The two LIBS observations in the plan will measure the composition of the flat, reddish material in the workspace that is fractured in a polygonal pattern (“Bloody Canyon”) and a nearby rock coating in which the composition is suspected to change with depth (“Burnt Camp Creek”). One idea is that the reddish material could be the early stage version of the thicker dark coatings we’ve been seeing.
      A large Mastcam mosaic (“Yosemite”) was planned to capture the very interesting view to the rover’s north. Nearby and below the rover is the layer of rocks in which the “Mineral King” site was drilled on the opposite side of the channel back in March. This is a stratum of sulfate-bearing rock that appears dark-toned from orbit and we’re interested to know how consistent its features are from one side of the channel to the other. Higher up, the Yosemite mosaic also captures some deformation features that may reveal past water activity, and some terrain associated with the Gediz Vallis ridge. So there’s a lot of science packed into one mosaic!
      Two long-distance RMI mosaics were planned; one is to image back into the channel, where there may be evidence of a late-stage debris flow at the base of the ridge. The second looks “forward” from the rover’s perspective instead, into the wind-shaped yardang unit above us that will hopefully be explored close-up in the rover’s future. This yardang mosaic is intended to form one part of a stereo observation.
      The modern environment on Mars will also be observed with dust devil surveys on both sols, line-of-sight and tau observations to measure atmospheric opacity (often increased by dust in the atmosphere), and zenith and suprahorizon movies with Navcam to look for clouds. There will also be standard passive observations of the rover’s environment by REMS and DAN.
      We’ll continue driving westward and upward, rounding the Texoli butte to keep climbing through the sulfate-bearing unit. It’s not always easy driving but there’s a lot more science to do!
      Written by Lucy Lim, Participating Scientist at NASA’s Goddard Space Flight Center
      Share








      Details
      Last Updated Nov 18, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4362-4363: Plates and Polygons


      Article


      6 days ago
      3 min read Peculiar Pale Pebbles
      During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…


      Article


      6 days ago
      2 min read Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...