Jump to content

Surfing NASA’s Internet of Animals: Satellites Study Ocean Wildlife


NASA

Recommended Posts

  • Publishers

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

An aerial view of Palmyra Atoll, where animal tracking data now being studied by NASA’s Internet of Animals project was collected using wildlife tags by partners at The Nature Conservancy, the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, and several universities.
An aerial view of Palmyra Atoll, where animal tracking data now being studied by NASA’s Internet of Animals project was collected using wildlife tags by partners at The Nature Conservancy, the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, and several universities.
The Nature Conservancy/Kydd Pollock

Anchoring the boat in a sandbar, research scientist Morgan Gilmour steps into the shallows and is immediately surrounded by sharks. The warm waters around the tropical island act as a reef shark nursery, and these baby biters are curious about the newcomer. They zoom close and veer away at the last minute, as Gilmour slowly makes her way toward the kaleidoscope of green sprouting from the island ahead.

Gilmour, a scientist at NASA’s Ames Research Center in California’s Silicon Valley, conducts marine ecology and conservation studies using data collected by the U.S. Geological Survey (USGS) from animals equipped with wildlife tags. Palmyra Atoll, a United States marine protected area, provides the perfect venue for this work.

A juvenile blacktip reef shark swims toward researchers in the shallow waters around Palmyra Atoll.
A juvenile blacktip reef shark swims toward researchers in the shallow waters around Palmyra Atoll.
The Nature Conservancy/Kydd Pollock

A collection of roughly 50 small islands in the tropical heart of the Pacific Ocean, the atoll is bursting with life of all kinds, from the reef sharks and manta rays circling the shoreline to the coconut crabs climbing palm branches and the thousands of seabirds swooping overhead. By analyzing the movements of dolphins, tuna, and other creatures, Gilmour and her collaborators can help assess whether the boundaries of the marine protected area surrounding the atoll actually protect the species they intend to, or if its limits need to shift.

Launched in 2020 by The Nature Conservancy and its partners – USGS, NOAA (National Oceanic and Atmospheric Administration), and several universities – the project team deployed wildlife tags at Palmyra in 2022, when Gilmour was a scientist with USGS.

Now with NASA, she is leveraging the data for a study under the agency’s Internet of Animals project. By combining information transmitted from wildlife tags with information about the planet collected by satellites – such as NASA’s Aqua, NOAA’s GOES (Geostationary Operational Environmental Satellite) satellites, and the U.S.-European Jason-3 – scientists can work with partners to draw conclusions that inform ecological management.

A satellite image shows a a collection of islands in various shades of green, stretching roughly in two parallel lines from left to right. On the top line, a thin layer of whitewater denotes where the reefs are. Bright teal surrounds the islands where the water is shallowest, fading quickly into the deep blue ocean water composing the majority of the image.
The Palmyra Atoll is a haven for biodiversity, boasting thriving coral reef systems, shallow waters that act as a shark nursery, and rich vegetation for various land animals and seabirds. In the Landsat image above, a small white square marks the research station, where scientists from all over the world come to study the many species that call the atoll home.
NASA/Earth Observatory Team

“Internet of Animals is more than just an individual collection of movements or individual studies; it’s a way to understand the Earth at large,” said Ryan Pavlick, then Internet of Animals project scientist at NASA’s Jet Propulsion Laboratory in Southern California, during the project’s kickoff event.

The Internet of Animals at Palmyra

“Our work at Palmyra was remarkably comprehensive,” said Gilmour. “We tracked the movements of eight species at once, plus their environmental conditions, and we integrated climate projections to understand how their habitat may change. Where studies may typically track two or three types of birds, we added fish and marine mammals, plus air and water column data, for a 3D picture of the marine protected area.”

internetofanimals3panel-2022-hires.png?w
Tagged Yellowfin Tuna, Grey Reef Sharks, and Great Frigatebirds move in and out of a marine protected area (blue square), which surrounds the Palmyra Atoll (blue circle) in the tropical heart of the Pacific. These species are three of many that rely on the atoll and its surrounding reefs for food and for nesting.
NASA/Lauren Dauphin

Now, the NASA team has put that data into a species distribution model, which combines the wildlife tracking information with environmental data from satellites, including sea surface temperature, chlorophyll concentration, and ocean current speed. The model can help researchers understand how animal populations use their habitats and how that might shift as the climate changes.

Preliminary results from Internet of Animals team show that the animals tracked are moving beyond the confines of the Palmyra marine protected area. The model identified suitable habitats both in and around the protected zone – now and under predicted climate change scenarios – other researchers and decisionmakers can utilize that knowledge to inform marine policy and conservation.

Research scientist Morgan Gilmour checks on a young great frigatebird in its nest. The marine protected area around Palmyra Atoll protects these birds' breeding grounds.
Research scientist Morgan Gilmour checks on a young great frigatebird in its nest. The marine protected area around Palmyra Atoll protects these birds’ breeding grounds.
UC Santa Barbara/Devyn Orr

Following a 2023 presidential memorandum, NOAA began studying and gathering input on whether to expand the protected areas around Palmyra and other parts of the Pacific Remote Islands Marine National Monument. Analysis from NASA’s Internet of Animals could inform that and similar decisions, such as whether to create protected “corridors” in the ocean to allow for seasonal migrations of wildlife. The findings and models from the team’s habitat analysis at Palmyra also could help inform conservation at similar latitudes across the planet.

Beyond the Sea: Other Internet of Animals Studies

Research at Palmyra Atoll is just one example of work by Internet of Animals scientists.

Claire Teitelbaum, a researcher with the Bay Area Environmental Research Institute based at NASA Ames, studies avian flu in wild waterfowl, investigating how their movement may contribute to transmission of the virus to poultry and other domestic livestock.

Teams at Ames and JPL are also working with USGS to create next-generation wildlife tags and sensors. Low-power radar tags in development at JPL would be lightweight enough to track small birds. Ames researchers plan to develop long-range radio tags capable of maximizing coverage and transmission of data from high-flying birds. This could help researchers take measurements in hard-to-reach layers of the atmosphere.

With the technology brought together by the Internet of Animals, even wildlife can take an active role in the study of Earth’s interacting systems, helping human experts learn more about our planet and how best to confront the challenges facing the natural world.

To learn more about the Internet of Animals visit: https://www.nasa.gov/nasa-earth-exchange-nex/new-missions-support/internet-of-animals/

The Internet of Animals project is funded by NASA and managed at NASA’s Jet Propulsion Laboratory in Southern California. The team at NASA’s Ames Research Center in California’s Silicon Valley is part of the NASA Earth Exchange, a Big Data initiative providing unique insights into Earth’s systems using the agency’s supercomputers at the center. Partners on the project include the U.S. Geological Survey, The Nature Conservancy, the National Oceanic and Atmospheric Administration, the Yale Center for Biodiversity and Global Change, Stanford University, University of Hawaii, University of California Santa Barbara, San Jose State University, University of Washington, and the Max Planck Institute for Animal Behavior.

For Researchers

Media Contacts

Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.

About the Author

Milan Loiacono

Milan Loiacono

Science Communication Specialist

Milan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.

Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers think meltwater beneath Martian ice could support microbial life.
      The white material seen within this Martian gully is believed to be dusty water ice. Scientists believe this kind of ice could be an excellent place to look for microbial life on Mars today. This image, showing part of a region called Dao Vallis, was captured by NASA’s Mars Reconnaissance Orbiter in 2009.NASA/JPL-Caltech/University of Arizona These holes, captured on Alaska’s Matanuska Glacier in 2012, are formed by cryoconite — dust particles that melt into the ice over time, eventually forming small pockets of water below the glacier’s surface. Scientists believe similar pockets of water could form within dusty water ice on Mars.Kimberly Casey CC BY-NC-SA 4.0 While actual evidence for life on Mars has never been found, a new NASA study proposes microbes could find a potential home beneath frozen water on the planet’s surface.
      Through computer modeling, the study’s authors have shown that the amount of sunlight that can shine through water ice would be enough for photosynthesis to occur in shallow pools of meltwater below the surface of that ice. Similar pools of water that form within ice on Earth have been found to teem with life, including algae, fungi, and microscopic cyanobacteria, all of which derive energy from photosynthesis.
      “If we’re trying to find life anywhere in the universe today, Martian ice exposures are probably one of the most accessible places we should be looking,” said the paper’s lead author, Aditya Khuller of NASA’s Jet Propulsion Laboratory in Southern California.
      Mars has two kinds of ice: frozen water and frozen carbon dioxide. For their paper, published in Nature Communications Earth & Environment, Khuller and colleagues looked at water ice, large amounts of which formed from snow mixed with dust that fell on the surface during a series of Martian ice ages in the past million years. That ancient snow has since solidified into ice, still peppered with specks of dust.  
      Although dust particles may obscure light in deeper layers of the ice, they are key to explaining how subsurface pools of water could form within ice when exposed to the Sun: Dark dust absorbs more sunlight than the surrounding ice, potentially causing the ice to warm up and melt up to a few feet below the surface.
      The white edges along these gullies in Mars’ Terra Sirenum are believed to be dusty water ice. Scientists think meltwater could form beneath the surface of this kind of ice, providing a place for possible photosynthesis. This is an enhanced-color image; the blue color would not actually be perceptible to the human eye.NASA/JPL-Caltech/University of Arizona Mars scientists are divided about whether ice can actually melt when exposed to the Martian surface. That’s due to the planet’s thin, dry atmosphere, where water ice is believed to sublimate — turn directly into gas — the way dry ice does on Earth. But the atmospheric effects that make melting difficult on the Martian surface wouldn’t apply below the surface of a dusty snowpack or glacier.
      Thriving Microcosms
      On Earth, dust within ice can create what are called cryoconite holes — small cavities that form in ice when particles of windblown dust (called cryoconite) land there, absorb sunlight, and melt farther into the ice each summer. Eventually, as these dust particles travel farther from the Sun’s rays, they stop sinking, but they still generate enough warmth to create a pocket of meltwater around them. The pockets can nourish a thriving ecosystem for simple lifeforms..
      “This is a common phenomenon on Earth,” said co-author Phil Christensen of Arizona State University in Tempe, referring to ice melting from within. “Dense snow and ice can melt from the inside out, letting in sunlight that warms it like a greenhouse, rather than melting from the top down.”
      Christensen has studied ice on Mars for decades. He leads operations for a heat-sensitive camera called THEMIS (Thermal Emission Imaging System) aboard NASA’s 2001 Mars Odyssey orbiter. In past research, Christensen and Gary Clow of the University of Colorado Boulder used modeling to demonstrate how liquid water could form within dusty snowpack on the Red Planet. That work, in turn, provided a foundation for the new paper focused on whether photosynthesis could be possible on Mars.
      In 2021, Christensen and Khuller co-authored a paper on the discovery of dusty water ice exposed within gullies on Mars, proposing that many Martian gullies form by erosion caused by the ice melting to form liquid water.
      This new paper suggests that dusty ice lets in enough light for photosynthesis to occur as deep as 9 feet (3 meters) below the surface. In this scenario, the upper layers of ice prevent the shallow subsurface pools of water from evaporating while also providing protection from harmful radiation. That’s important, because unlike Earth, Mars lacks a protective magnetic field to shield it from both the Sun and radioactive cosmic ray particles zipping around space.
      The study authors say the water ice that would be most likely to form subsurface pools would exist in Mars’ tropics, between 30 degrees and 60 degrees latitude, in both the northern and southern hemispheres.
      Khuller next hopes to re-create some of Mars’ dusty ice in a lab to study it up close. Meanwhile, he and other scientists are beginning to map out the most likely spots on Mars to look for shallow meltwater — locations that could be scientific targets for possible human and robotic missions in the future.
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-142
      Share
      Details
      Last Updated Oct 17, 2024 Related Terms
      Mars Astrobiology Jet Propulsion Laboratory Explore More
      4 min read New Team to Assess NASA’s Mars Sample Return Architecture Proposals
      NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the…
      Article 20 hours ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
      Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
      Article 1 day ago 5 min read Snippet of Euclid Mission’s Cosmic Atlas Released by ESA
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Name: Christine Knudson
      Title: Geologist
      Formal Job Classification: Research Assistant
      Organization: Planetary Environments Laboratory, Science Directorate (Code 699)
      Christine Knudson is a geologist at NASA’s Goddard Space Flight Center in Greenbelt, Md. She began graduate school in August 2012, the same month that NASA’s Curiosity rover landed on Mars. “It is very exciting to be part of the rover team and to be involved in an active Mars mission,” she says. “On days when we’re downlinking science data and I’m on shift, I am one of the first people to see data from an experiment done on Mars!”Courtesy of Christine Knudsen What do you do and what is most interesting about your role here at Goddard?
      I am a geologist doing both laboratory and field work, primarily focusing on Mars analog research. I work on the Curiosity rover as part of the Sample Analysis at Mars (SAM) instrument team.
      Why did you become a geologist?
      As a child, I always loved being outside and I was really interested in all things related to the Earth. In college, I figured out that I wanted to be a geologist after taking an introduction to geology course. I wanted to learn more about the Earth and its interior, specifically volcanism.
      What is your educational background?
      In 2012, I received a B.S. in geology and environmental geoscience from Northern Illinois University. In August 2012, the same month that Curiosity landed on Mars, I started graduate school and in December 2014, I received a M.S. in geology from the same university. I focused on igneous geochemistry, investigating the pre-eruptive water contents of a Guatemalan volcano.
      Why did you come to Goddard?
      I came to Goddard in February 2015 to perform laboratory analyses of Mars analog materials, rock and mineral samples, from Earth, that the Curiosity rover and spectral orbiters have also identified on Mars. It is very exciting to be part of the rover team and to be involved in an active Mars mission.
      What is a highlight of your work as a laboratory geologist doing Mars analog research?
      Using laboratory analyses to interpret data we are getting back from Curiosity is incredibly exciting! I perform evolved gas analysis to replicate the analyses that the SAM instrument does on the rover. Curiosity scoops sand or drills into the rocks at stops along its drive through Gale Crater on Mars, then dumps the material into a small cup within the SAM instrument inside the rover. The rock is heated in a small oven to about 900 C [about 1650 F], and the instrument captures the gases that are released from the sample as it is heated. SAM uses a mass spectrometer to identify the different gases, and that tells us about the minerals that make up the rock.
      We do the same analyses on rocks and minerals in our lab to compare to the SAM analyses. The other instruments on Curiosity also aid in the identification of the rocks, minerals, and elements present in this location on the Martian surface.
      I also serve as a payload downlink lead for the SAM instrument. I check on the science and engineering data after we perform an experiment on Mars. On the days I’m on shift, I check to make sure that our science experiments finish without any problems, and that the instrument is “healthy,” so that the rover can continue driving and begin the science that is planned for the next sol.
      On days when we’re downlinking science data and I’m on shift, I am one of the first people to see data from an experiment done on Mars!
      What is some of the coolest field work you have done?
      I have done Mars analog field work in New Mexico, Hawaii, and Iceland. The field work in Hawaii is exciting because one of our field sites was inside a lava tube on Mauna Loa. We expect that there are lava tubes on Mars, and we know that the interior of the tubes would likely be better shielded from solar radiation, which might allow for the preservation of organic markers. Scientifically, we’re interested in characterizing the rocks and minerals inside lava tubes to understand how the interior differs from the surface over time and to investigate differences in elemental availability as an accessible resource for potential life. Learning about these processes on Earth helps us understand what might be possible on Mars too.
      “The field work in Hawaii is exciting because one of our field sites was inside a lava tube on Mauna Loa,” Knudson says. “We expect that there are lava tubes on Mars, and we know that the interior of the tubes would likely be better shielded from solar radiation, which might allow for the preservation of organic markers.”Courtesy of Christine Knudson I use handheld versions of laboratory instruments, some of which were miniaturized and made to fit on the Curiosity rover, to take in situ geochemical measurements — to learn what elements are present in the rocks and in what quantities. We also collect samples to analyze in the laboratory.
      I also love Hawaii because the island is volcanically active. Hawaii Volcano National Park is incredible! A couple years ago, I was able to see the lava lake from an ongoing eruption within the crater of Kīlauea volcano. The best time to see the lava lake is at night because the glowing lava is visible from multiple park overlooks.
      As a Mars geologist, what most fascinates you about the Curiosity rover?
      When Curiosity landed, it was the largest rover NASA had ever sent to Mars: It’s about the size of a small SUV, so landing it safely was quite the feat! Curiosity also has some of the first science instruments ever made to operate on another planet, and we’ve learned SO much from those analyses.
      Curiosity and the other rovers are sort of like robotic geologists exploring Mars.  Working with the Curiosity rover allows scientists to do geology on Mars — from about 250 million miles away! Earth analogs help us to understand what we are seeing on Mars, since that “field site” is so incredibly far away and inaccessible to humans at this time.  
      What do you do for fun?
      I spend most of my free time with my husband and two small children. We enjoy family hikes, gardening, and both my boys love being outside as much as I do.
      I also enjoy yoga, and I crochet: I make hats, blankets, and I’m starting a sweater soon.
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      Nature-lover. Mom. Geologist. Cat-enthusiast. Curious. Snack-fiend.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Oct 16, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      The Solar System Curiosity (Rover) Mars Mars Science Laboratory (MSL) People of Goddard People of NASA Explore More
      7 min read Michael Thorpe Studies Sediment from Source to Sink
      Sedimentary and planetary geologist Michael Thorpe finds the stories rocks have to tell, those on…
      Article 9 months ago 5 min read Casey Honniball: Finding Her Space in Lunar Science
      Article 7 months ago 3 min read Malika Graham: Helping NASA Bring Mars Back to Earth
      Article 3 years ago View the full article
    • By European Space Agency
      At the International Astronautical Congress (IAC) in Milan this week, ESA signed a contract for Element #1, the first phase of the HydRON Demonstration System. HydRON, which stands for High thRoughput Optical Network, is set to transform the way data-collecting satellites communicate, using laser technology that will allow satellites to connect with each other and ground networks much faster.
      View the full article
    • By European Space Agency
      This week, at the International Aeronautics Congress in Milan, ESA officially kicked off a new project called Ciseres, a small satellite mission designed to significantly improve crisis response times using artificial intelligence (AI). Part of ESA's Civil Security from Space (CSS) programme, Ciseres aims to enhance satellite capabilities to alert first responders and government officials within minutes of the occurrence of a disaster – such as floods, fires, landslides. The project is led and co-financed by Deimos, a European space tech company specialising in small satellite missions.
      View the full article
    • By NASA
      A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 12:06 p.m. EDT on Monday, Oct. 14, 2024. After launch, the spacecraft plans to fly by Mars in February 2025, then back by Earth in December 2026, using the gravity of each planet to increase its momentum. With help of these “gravity assists,” Europa Clipper will achieve the velocity needed to reach Jupiter in April 2030.Credit: NASA/Kim Shiflett NASA’s Europa Clipper has embarked on its long voyage to Jupiter, where it will investigate Europa, a moon with an enormous subsurface ocean that may have conditions to support life. The spacecraft launched at 12:06 p.m. EDT Monday aboard a SpaceX Falcon Heavy rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida.
      The largest spacecraft NASA ever built for a mission headed to another planet, Europa Clipper also is the first NASA mission dedicated to studying an ocean world beyond Earth. The spacecraft will travel 1.8 billion miles (2.9 billion kilometers) on a trajectory that will leverage the power of gravity assists, first to Mars in four months and then back to Earth for another gravity assist flyby in 2026. After it begins orbiting Jupiter in April 2030, the spacecraft will fly past Europa 49 times.
      “Congratulations to our Europa Clipper team for beginning the first journey to an ocean world beyond Earth,” said NASA Administrator Bill Nelson. “NASA leads the world in exploration and discovery, and the Europa Clipper mission is no different. By exploring the unknown, Europa Clipper will help us better understand whether there is the potential for life not just within our solar system, but among the billions of moons and planets beyond our Sun.”
      Approximately five minutes after liftoff, the rocket’s second stage fired up and the payload fairing, or the rocket’s nose cone, opened to reveal Europa Clipper. About an hour after launch, the spacecraft separated from the rocket. Ground controllers received a signal soon after, and two-way communication was established at 1:13 p.m. with NASA’s Deep Space Network facility in Canberra, Australia. Mission teams celebrated as initial telemetry reports showed Europa Clipper is in good health and operating as expected.
      “We could not be more excited for the incredible and unprecedented science NASA’s Europa Clipper mission will deliver in the generations to come,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Everything in NASA science is interconnected, and Europa Clipper’s scientific discoveries will build upon the legacy that our other missions exploring Jupiter — including Juno, Galileo, and Voyager — created in our search for habitable worlds beyond our home planet.”
      The main goal of the mission is to determine whether Europa has conditions that could support life. Europa is about the size of our own Moon, but its interior is different. Information from NASA’s Galileo mission in the 1990s showed strong evidence that under Europa’s ice lies an enormous, salty ocean with more water than all of Earth’s oceans combined. Scientists also have found evidence that Europa may host organic compounds and energy sources under its surface.
      If the mission determines Europa is habitable, it may mean there are more habitable worlds in our solar system and beyond than imagined.
      “We’re ecstatic to send Europa Clipper on its way to explore a potentially habitable ocean world, thanks to our colleagues and partners who’ve worked so hard to get us to this day,” said Laurie Leshin, director, NASA’s Jet Propulsion Laboratory in Southern California. “Europa Clipper will undoubtedly deliver mind-blowing science. While always bittersweet to send something we’ve labored over for years off on its long journey, we know this remarkable team and spacecraft will expand our knowledge of our solar system and inspire future exploration.”
      In 2031, the spacecraft will begin conducting its science-dedicated flybys of Europa. Coming as close as 16 miles (25 kilometers) to the surface, Europa Clipper is equipped with nine science instruments and a gravity experiment, including an ice-penetrating radar, cameras, and a thermal instrument to look for areas of warmer ice and any recent eruptions of water. As the most sophisticated suite of science instruments NASA has ever sent to Jupiter, they will work in concert to learn more about the moon’s icy shell, thin atmosphere, and deep interior.
      To power those instruments in the faint sunlight that reaches Jupiter, Europa Clipper also carries the largest solar arrays NASA has ever used for an interplanetary mission. With arrays extended, the spacecraft spans 100 feet (30.5 meters) from end to end. With propellant loaded, it weighs about 13,000 pounds (5,900 kilograms).
      In all, more than 4,000 people have contributed to Europa Clipper mission since it was formally approved in 2015.
      “As Europa Clipper embarks on its journey, I’ll be thinking about the countless hours of dedication, innovation, and teamwork that made this moment possible,” said Jordan Evans, project manager, NASA JPL. “This launch isn’t just the next chapter in our exploration of the solar system; it’s a leap toward uncovering the mysteries of another ocean world, driven by our shared curiosity and continued search to answer the question, ‘are we alone?’”
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, NASA JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. The main spacecraft body was designed by APL in collaboration with NASA JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.
      NASA’s Launch Services Program, based at NASA Kennedy, managed the launch service for the Europa Clipper spacecraft.
      Find more information about NASA’s Europa Clipper mission here:
      https://science.nasa.gov/mission/europa-clipper
      -end-
      Meira Bernstein / Karen Fox
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / karen.c.fox@nasa.gov
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov
      Share
      Details
      Last Updated Oct 14, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Europa Clipper Europa Jet Propulsion Laboratory Jupiter Jupiter Moons Kennedy Space Center View the full article
  • Check out these Videos

×
×
  • Create New...