Jump to content

30 Years Ago: STS-65, the Second International Microgravity Lab Mission


NASA

Recommended Posts

  • Publishers

On July 8, 1994, space shuttle Columbia took to the skies on its 17th trip into space, on the second International Microgravity Laboratory (IML-2) mission. Six space agencies sponsored 82 life and microgravity science experiments. The seven-person crew consisted of Commander Robert D. Cabana, Pilot James D. Halsell, Payload Commander Richard J. Hieb, Mission Specialists Carl E. Walz, Leroy Chiao, and Donald A. Thomas, and Payload Specialist Chiaki Mukai representing the National Space Development Agency (NASDA) of Japan, now the Japan Aerospace Exploration Agency. Jean-Jacques H. Favier of the French space agency CNES served as a backup payload specialist. During their then-record setting 15-day shuttle flight, the international team of astronauts successfully completed the science program. They returned to earth on July 23.

The STS-65 crew patch Official photo of the STS-65 crew of Richard J. Hieb, seated left, Robert D. Cabana, and Donald A. Thomas; Leroy Chiao, standing left, James D. Halsell, Chiaki Mukai of Japan, and Carl E. Walz The payload patch for the International Microgravity Laboratory-2
Left: The STS-65 crew patch. Middle: Official photo of the STS-65 crew of Richard J. Hieb, seated left, Robert D. Cabana, and Donald A. Thomas; Leroy Chiao, standing left, James D. Halsell, Chiaki Mukai of Japan, and Carl E. Walz. Right: The payload patch for the International Microgravity Laboratory-2.

In August 1973, NASA and the European Space Research Organization, reorganized as the European Space Agency (ESA) in 1975, agreed to build a reusable laboratory called Spacelab to fly in the space shuttle’s cargo bay. As part of the agreement, ESA built two pressurized modules in addition to other supporting hardware. First flying on STS-9 in 1983, the 18-foot-long pressurized Spacelab module made its 10th flight on STS-65. In September 1992 NASA named Hieb as the IML-2 payload commander and Mukai and Favier as prime and backup payload specialists, respectively, adding Chiao and Thomas as mission specialists in October 1992, finally designating Cabana, Halsell, and Walz as the orbiter crew in August 1993. For Cabana and Hieb, both selected as astronauts in 1985, STS-65 marked their third spaceflight.  NASA selected Halsell, Walz, Chiao, and Thomas in 1990, in the class nicknamed The Hairballs. Walz would make his second flight, with the other three making their first. NASDA selected Mukai in 1985 and she holds the distinction as the first Japanese woman in space. Chiao and Mukai as part of the STS-65 crew marked the first time that two Asians flew on the shuttle at the same time, and with Kazakh cosmonaut Talgat A. Musbayev aboard Mir, the first time that three people of Asian origins flew in space at the same time.

The STS-65 crew during preflight training at NASA’s Johnson Space Center in Houston Workers at NASA’s Kennedy Space Center in Florida prepare the Spacelab module for the STS-65 mission
Left: The STS-65 crew during preflight training at NASA’s Johnson Space Center in Houston. Right: Technicians at NASA’s Kennedy Space Center in Florida prepare the Spacelab module for the STS-65 mission.

Columbia returned to NASA’s Kennedy Space Center (KSC) in Florida following its previous flight, STS-62, in March 1994. Technicians in KSC’s Orbiter Processing Facility (OPF) serviced the orbiter, removed the previous payload, and installed the Spacelab module in the payload bay. Following a successful leak check of the Spacelab module, rollover of Columbia from the OPF to the Vehicle Assembly Building (VAB) took place on June 8, where workers mated it with an external tank (ET) and two solid rocket boosters (SRBs). Following integrated testing, the stack rolled out to Launch Pad 39A seven days later. The crew participated in the Terminal Countdown Demonstration Test on June 22.

Liftoff of space shuttle Columbia on STS-65 carrying the second International Microgravity Laboratory
Liftoff of space shuttle Columbia on STS-65 carrying the second International Microgravity Laboratory.

On July 8, 1994, precisely on time, Columbia thundered off KSC’s Launch Pad 39A to begin the STS-65 mission. For the first time in shuttle history, a video camera recorded the liftoff from the orbiter’s flight deck, showing the vibrations during the first two minutes while the SRBs fired, smoothing out once the shuttle main engines took over. Mounted inside Columbia’s payload bay, the Spacelab 18-foot-long module provided a shirt-sleeve environment for the astronauts to conduct the scientific experiments. As during many Spacelab missions, the STS-65 crew carried out science operations 24-hours a day, divided into two teams – the red shift comprised Cabana, Halsell, Hieb, and Mukai, while Chiao, Thomas, and Walz made up the blue shift.

Still image from video recorded on the shuttle’s flight deck during powered ascent James D. Halsell, left, and Carl E. Walz moments after Columbia reached orbit View of the Spacelab module in the shuttle’s payload bay
Left: Still image from video recorded on the shuttle’s flight deck during powered ascent. Middle: James D. Halsell, left, and Carl E. Walz moments after Columbia reached orbit. Right: View of the Spacelab module in the shuttle’s payload bay.

Richard J. Hieb opens the hatch from the airlock to the tunnel leading to the Spacelab module Hieb and Chiaki Mukai begin activating Spacelab and its experiments The view from the tunnel showing astronauts at work in the Spacelab module
Left: Richard J. Hieb opens the hatch from the airlock to the tunnel leading to the Spacelab module. Middle: Hieb and Chiaki Mukai begin activating Spacelab and its experiments. Right: The view from the tunnel showing astronauts at work in the Spacelab module.

After reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. Shortly after, Hieb opened the hatch to the transfer tunnel and translated through it to enter the Spacelab module for the first time. He and Mukai activated the module and turned on the first experiments. For the next 14 days, the astronauts worked round the clock, with Cabana, Halsell, and Walz managing the shuttle’s systems while Hieb, Chiao, Thomas, and Mukai conducted the bulk of the research. The astronauts commemorated the 25th anniversary of the Apollo 11 launch on July 16 and the Moon landing four days later, recalling that their spacecraft and the Command Module shared the name Columbia.

Chiaki Mukai of the National Space Development Agency of Japan, now the Japan Aerospace Exploration Agency, talks to students in Japan using the shuttle’s amateur radio Richard J. Hieb, left, and Robert D. Cabana take an air sample from an experiment Hieb in the Lower Body Negative Pressure device
Left: Chiaki Mukai of the National Space Development Agency of Japan, now the Japan Aerospace Exploration Agency, talks to students in Japan using the shuttle’s amateur radio. Middle: Richard J. Hieb, left, and Robert D. Cabana take an air sample from an experiment. Right: Hieb in the Lower Body Negative Pressure device.

Donald A. Thomas, left, Leroy Chiao, Richard J. Hieb, and Chiaki Mukai at work in the Spacelab module Chiao, left, and Thomas work on the Biorack instruments Goldfish swim in the Aquatic Animal Experiment Unit
Left: Donald A. Thomas, left, Leroy Chiao, Richard J. Hieb, and Chiaki Mukai at work in the Spacelab module. Middle: Chiao, left, and Thomas work on the Biorack instruments. Right: Goldfish swim in the Aquatic Animal Experiment Unit.

Robert D. Cabana uses the shuttle’s amateur radio Leroy Chiao looks out at the Earth Carl E. Walz working on the shuttle’s flight deck
Left: Robert D. Cabana uses the shuttle’s amateur radio. Middle: Leroy Chiao looks out at the Earth. Right: Carl E. Walz working on the shuttle’s flight deck.

Carl E. Walz flies through the Spacelab module Donald A. Thomas gives two thumbs up for the crew’s performance during the mission Thomas, left, Walz, and Leroy Chiao pay tribute to Apollo 11 on the 25th anniversary of the Moon landing mission
Left: Carl E. Walz flies through the Spacelab module. Middle: Donald A. Thomas gives two thumbs up for the crew’s performance during the mission. Right: Thomas, left, Walz, and Leroy Chiao pay tribute to Apollo 11 on the 25th anniversary of the Moon landing mission.

The first time two Asians fly on the shuttle at the same time – Chiaki Mukai, left, of the National Space Development Agency of Japan, now the Japan Aerospace Exploration Agency, left, and NASA astronaut Leroy Chiao Donald A. Thomas, left, James D. Halsell, Carl E. Walz, and Chiao, all selected in 1990 as part of astronaut class 13, nicknamed The Hairballs Inflight photograph of the STS-65 crew
Left: The first time two Asians fly on the shuttle at the same time – Chiaki Mukai, left, of the National Space Development Agency of Japan, now the Japan Aerospace Exploration Agency, left, and NASA astronaut Leroy Chiao. Middle: Donald A. Thomas, left, James D. Halsell, Carl E. Walz, and Chiao, all selected in 1990 as part of astronaut class 13, nicknamed The Hairballs. Right: Inflight photograph of the STS-65 crew.

Rio de Janeiro Barrier islands in Papua New Guinea Hurricane Emilia in the central Pacific Ocean
A selection of the STS-65 crew Earth observation photographs. Left: Rio de Janeiro. Middle: Barrier islands in Papua New Guinea. Right: Hurricane Emilia in the central Pacific Ocean.

James D. Halsell uses the laptop-based PILOT to train for the entry and landing The astronauts close Columbia’s payload bay doors prior to entry Flash of plasma seen through Columbia’s overhead window during reentry
Left: James D. Halsell uses the laptop-based PILOT to train for the entry and landing. Middle: The astronauts close Columbia’s payload bay doors prior to entry. Right: Flash of plasma seen through Columbia’s overhead window during reentry.

At the end of 13 days, the astronauts finished the last of the experiments and deactivated the Spacelab module. Managers waved off the planned landing on July 22 due to cloudy weather at KSC. On July 23, the astronauts closed the hatch to the Spacelab module for the final time, closed Columbia’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. Cabana piloted Columbia to a smooth landing on KSC’s Shuttle Landing Facility, completing 236 orbits around the Earth in 14 days, 17 hours, and 55 minutes, at the time the longest shuttle flight. Mukai set a then-record for the longest single flight by a woman. In October 1994, Columbia returned to its manufacturer, Rockwell International in Palmdale, California, for scheduled modification and refurbishment before its next mission, STS-73, in October 1995.

Robert D. Cabana pilots Columbia during the final approach to NASA’s Kennedy Space Center (KSC) in Florida, with the Vehicle Assembly Building visible through the window Columbia touches down on KSC’s Shuttle Landing Facility to end the STS-65 mission Donald A. Thomas, left, and Cabana give a thumbs up after the successful mission
Left: Robert D. Cabana pilots Columbia during the final approach to NASA’s Kennedy Space Center (KSC) in Florida, with the Vehicle Assembly Building visible through the window. Middle: Columbia touches down on KSC’s Shuttle Landing Facility to end the STS-65 mission. Right: Donald A. Thomas, left, and Cabana give a thumbs up after the successful mission.

The two Spacelab modules flew a total of 16 times, the last one during the STS-90 Neurolab mission in April 1998. Visitors can view the module that flew on STS-65 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia. The other module resides at the Airbus Defence and Space plant in Bremen, Germany, and not accessible to the public.

The Spacelab long module that flew on STS-65 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia. The Spacelab long module that flew on STS-65 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia. The Spacelab long module that flew on STS-65 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia.
The Spacelab long module that flew on STS-65 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia.

Enjoy the crew narrate a video about the STS-65 mission. Read Cabana’s and Chiao’s recollections of the STS-65 mission in their oral histories with the JSC History Office.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has awarded Bastion Technologies Inc., of Houston, the Center Occupational Safety, Health, Medical, System Safety and Mission Assurance Contract (COSMC) at the agency’s Ames Research Center in California’s Silicon Valley.
      The COSMC contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract, with an indefinite-delivery/indefinite-quantity component and maximum potential value of $53 million. The contract phase-in begins Thursday, Jan. 2, 2025, followed by a one-year base period that begins Feb. 14, 2025, and options to extend performance through Aug. 13, 2030.
      Under this contract, the company will provide support for occupational safety, industrial hygiene, health physics, safety and health training, emergency response, safety culture, medical, wellness, fitness, and employee assistance. The contractor also will provide subject matter expertise in several areas including system safety, software safety and assurance, quality assurance, pressure system safety, procurement quality assurance, and range safety. Work will primarily be performed at NASA Ames and NASA’s Armstrong Flight Research Center in Edwards, California, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      NASA Headquarters, Washington
      202-358-1600
      tiernan.p.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By Space Force
      Over the past two years, the first U.S. space service component has tripled in size, established a 24/7 space watch cell and executed three Tier 1 Combatant Command exercises.

      View the full article
    • By NASA
      On Nov. 16, 2009, space shuttle Atlantis began its 31st trip into space, on the third Utilization and Logistics Flight (ULF3) mission to the International Space Station, the 31st shuttle flight to the orbiting lab. During the 11-day mission, the six-member STS-129 crew worked with the six-person Expedition 21 crew during seven days of docked operations. The mission’s primary objectives included delivering two external logistics carriers and their spare parts, adding nearly 15 tons of hardware to the station, and returning a long-duration crew member, the last to return on a shuttle. Three of the STS-129 astronauts conducted three spacewalks to transfer spare parts and continue assembly and maintenance of the station. As a group of 12, the joint crews celebrated the largest and most diverse Thanksgiving gathering in space.

      Left: Official photograph of the STS-129 crew of Leland D. Melvin, left, Charles O. Hobaugh, Michael J. Foreman, Robert “Bobby” L. Satcher, Barry “Butch” E. Wilmore, and Randolph “Randy” J. Bresnik. Middle: The STS-129 crew patch. Right: The ULF3 payload patch.
      The six-person STS-129 crew consisted of Commander Charles O. Hobaugh, Pilot Barry “Butch” E. Wilmore, and Mission Specialists Randolph “Randy” J. Bresnik, Michael J. Foreman, Leland D. Melvin, and Robert “Bobby” L. Satcher. Primary objectives of the mission included launch and transfer to the station of the first two EXPRESS Logistics Carriers (ELC-1 and ELC-2) and their multiple spare parts, and the return of NASA astronaut and Expedition 20 and 21 Flight Engineer Nicole P. Stott, the last astronaut to rotate on the shuttle.

      Left: In the Orbiter Processing Facility (OPF) at NASA’s Kennedy Space Center in Florida, workers finish processing Atlantis for STS-129. Right: Space shuttle Atlantis rolls over from the OPF to the Vehicle Assembly Building.

      Left: Atlantis rolls out to Launch Pad 39A. Right: The STS-129 crew during the Terminal Countdown Demonstration Test.
      Atlantis returned to NASA’s Kennedy Space Center (KSC) from its previous mission, STS-125, on June 2, 2009, and workers towed it to the Orbiter Processing Facility (OPF) to prepare it for STS-129. The orbiter rolled over to the Vehicle Assembly Building on Oct. 6, and after mating with its external tank and twin solid rocket boosters, rolled out to Launch Pad 39A on Oct. 14, targeting a Nov. 16 launch. Six days later, the six-member crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal of the actual countdown for launch, returning to Houston for final training. They returned to KSC on Nov. 13 to prepare for launch.

      Left: With Atlantis sitting on Launch Pad 39A, the Ares 1-X rocket lifts off from Launch Pad 39B. Right: The payload canister arrives at Launch Pad 39A.

      Left: The STS-129 astronauts leave crew quarters for the ride to Launch Pad 39A. Right: Liftoff of space shuttle Atlantis on STS-129.
      On Nov. 16, at 2:28 p.m. EST, space shuttle Atlantis lifted off from Launch Pad 39A to begin its 31st trip into space, carrying its six-member crew on the ULF3 space station outfitting and resupply mission. Eight and a half minutes later, Atlantis and its crew had reached orbit. The flight marked Hobaugh’s third time in space, having flown on STS-104 and STS-118, Foreman’s and Melvin’s second, having flown on STS-123 and STS-122, respectively, while Wilmore, Bresnik, and Satcher enjoyed their first taste of weightlessness.

      Left: The two EXPRESS Logistics Carriers in Atlantis’ payload bay. Middle: Leland D. Melvin participates in the inspection of Atlantis’ thermal protection system. Right: The Shuttle Remote Manipulator System grasps the Orbiter Boom Sensor System for the inspection.
      After reaching orbit, the crew opened the payload bay doors, deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts spent six hours on their second day in space conducting a detailed inspection of Atlantis’ nose cap and wing leading edges, with Hobaugh, Wilmore, Melvin, and Bresnik taking turns operating the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the Orbiter Boom Sensor System (OBSS).

      Left: The International Space Station as seen from Atlantis during the rendezvous and docking maneuver. Middle: Atlantis as seen from the space station, showing the two EXPRESS Logistics Carriers (ELC) in the payload bay. Right: View of the space station from Atlantis during the rendezvous pitch maneuver, with the Shuttle Remote Manipulator System grasping ELC-1 in preparation for transfer shortly after docking.
      On the mission’s third day, Hobaugh assisted by his crewmates brought Atlantis in for a docking with the space station. During the rendezvous, Hobaugh stopped the approach at 600 feet and completed the Rendezvous Pitch Maneuver so astronauts aboard the station could photograph Atlantis’ underside to look for any damage to the tiles. Shortly after docking, the crews opened the hatches between the two spacecraft and the six-person station crew welcomed the six-member shuttle crew. After the welcoming ceremony, Stott joined the STS-129 crew, leaving a crew of five aboard the station. Melvin and Bresnik used the SRMS to pick up ELC-1 from the payload bay and hand it off to Wilmore and Expedition 21 NASA astronaut Jeffrey N. Williams operating the Space Station Remote Manipulator System (SSRMS), who then installed it on the P3 truss segment.

      Images from the first spacewalk. Left: Michael J. Foreman unstows the S-band Antenna Support Assembly prior to transferring it to the station. Middle: Robert “Bobby” L. Satcher lubricates the robotic arm’s Latching End Effector. Right: Satcher’s image reflected in a Z1 radiator panel.
      During the mission’s first of three spacewalks on flight day four, Foreman and Satcher ventured outside for six hours and 37 minutes. During the excursion, with robotic help from their fellow crew members, they transferred a spare S-band Antenna Support Assembly from the shuttle’s payload bay to the station’s Z1 truss. Satcher, an orthopedic surgeon by training, performed “surgery” on the station’s main robotic arm as well as the robotic arm on the Kibo Japanese module, by lubricating their latching end effectors. One day after joining Atlantis’ crew, Stott celebrated her 47th birthday.

      Left: Space station crew member Jeffery N. Williams assists STS-129 astronaut Leland D. Melvin in operating the space station’s robotic arm to transfer and install the second EXPRESS Logistics Carrier (ELC2) on the S3 truss. Middle: The station robotic arm installs ELC2 on the S3 truss. Right: Michael J. Foreman, left, and Randolph J. Bresnik during the mission’s second spacewalk.
      On the mission’s fifth day, the astronauts performed another focused inspection of the shuttle’s thermal protection system. The next day, through another coordinated robotic activity involving the shuttle and station arms, the astronauts transferred ELC-2 and its complement of spares from the payload bay to the station’s S3 truss. Foreman and Bresnik completed the mission’s second spacewalk. Working on the Columbus module, they installed the Grappling Adaptor to On-Orbit Railing (GATOR) fixture that includes a system used for ship identification and an antenna for Ham radio operators. They next installed a wireless video transmission system on the station’s truss. This spacewalk lasted six hours and eight minutes.

      Left: Randolph J. Bresnik during the third STS-129 spacewalk. Middle: Robert “Bobby” L. Satcher during the third spacewalk. Right: The MISSE 7 exposure experiment suitcases installed on ELC2.
      Following a crew off duty day, on flight day eight Satcher and Bresnik exited the airlock for the mission’s third and final spacewalk. Their first task involved moving an oxygen tank from the newly installed ELC-2 to the Quest airlock. They accomplished this task with robotic assistance from their fellow crew members. Bresnik retrieved the two-suitcase sized MISSE-7 experiment containers from the shuttle cargo bay and installed them on the MISSE-7 platform on ELC-2, opening them to begin their exposure time. This third spacewalk lasted five hours 42 minutes.

      Left: An early Thanksgiving meal for 12 aboard the space station. Right: After the meal, who has the dishes?
      Thanksgiving Day fell on the day after undocking, so the joint crews celebrated with a meal a few days early. The meal represented not only the largest Thanksgiving celebration in space with 12 participants, but also the most international, with four nations represented – the United States, Russia, Canada, and Belgium (representing the European Space Agency).

      Left: The 12 members of Expedition 21 and STS-129 pose for a final photograph before saying their farewells. Right: The STS-129 crew, now comprising seven members.

      A selection of STS-129 Earth observation images. Left: Maui. Middle: Los Angeles. Right: Houston.
      Despite their busy workload, as with all space crews, the STS-129 astronauts made time to look out the windows and took hundreds of photographs of their home planet.

      Left: The space station seen from Atlantis during the flyaround. Middle: Atlantis as seen from the space station during the flyaround, with a now empty payload bay. Right: Astronaut Nicole P. Stott looks back at the station, her home for three months, from the departing Atlantis.
      On flight day nine, the joint crews held a brief farewell ceremony. European Space Agency astronaut Frank De Winne, the first European to command the space station, handed over command to NASA astronaut Williams. The two crews parted company and closed the hatches between the two spacecraft. The next day, with Wilmore at the controls, Atlantis undocked from the space station, having spent seven days as a single spacecraft. Wilmore completed a flyaround of the station, with the astronauts photographing it to document its condition. A final separation burn sent Atlantis on its way.
      The astronauts used the shuttle’s arm to pick up the OBSS and perform a late inspection of Atlantis’ thermal protection system. On flight day 11, Hobaugh and Wilmore tested the orbiter’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing. The entire crew busied themselves with stowing all unneeded equipment.

      Left: Atlantis about to touch down at NASA’s Kennedy Space Center in Florida. Middle: Atlantis touches down. Right: Atlantis deploys its drag chute as it continues down the runway.

      Left: Six of the STS-129 astronauts pose with Atlantis on the runway at NASA’s Kennedy Space Center in Florida. Right: The welcome home ceremony for the STS-129 crew at Ellington Field in Houston.
      On Nov. 27, the astronauts closed Atlantis’ payload bay doors, donned their launch and entry suits, and strapped themselves into their seats, a special recumbent one for Stott who had spent the last three months in weightlessness. Hobaugh fired Atlantis’ two Orbital Maneuvering System engines to bring them out of orbit and head for a landing half an orbit later. He guided Atlantis to a smooth touchdown at KSC’s Shuttle Landing Facility.
      The landing capped off a very successful STS-129 mission of 10 days, 19 hours, 16 minutes. The six astronauts orbited the planet 171 times. Stott spent 90 days, 10 hours, 45 minutes in space, completing 1,423 orbits of the Earth. After towing Atlantis to the OPF, engineers began preparing it for its next flight, STS-132 in May 2010. The astronauts returned to Houston for a welcoming ceremony at Ellington Field.
      Enjoy the crew narrate a video about the STS-129 mission.
      Explore More
      23 min read 55 Years Ago: Apollo 12 Makes a Pinpoint Landing on the Moon
      Article 4 days ago 12 min read 40 Years Ago: STS-51A – “The Ace Repo Company”
      Article 1 week ago 1 min read Oral History with Jon A. McBride, 1943 – 2024
      Article 2 weeks ago View the full article
    • By NASA
      Live High-Definition Views from the International Space Station (Official NASA Stream)
  • Check out these Videos

×
×
  • Create New...