Jump to content

Recommended Posts

Posted
Ariane_6_first_flight_highlights_card_fu Video: 00:02:06

Europe’s new rocket Ariane 6 powered into space on 9 July 2024 from a newly built dedicated launch pad in French Guiana. Liftoff occurred at 16:00 local time (20:00 BST, 21:00 CEST). 

Europe’s new rocket Ariane 6 powered Europe into space taking with it a varied selection of experiments, satellites, payload deployers and reentry demonstrations that represent thousands across Europe, from students to industry and experienced space actors. 

This inaugural flight, designated VA262, is a demonstration flight to show the capabilities and prowess of Ariane 6 in escaping Earth's gravity and operating in space. Nevertheless, it had several passengers on board. 

Ariane 6 was built by prime contractor and design authority ArianeGroup. In addition to the rocket, the liftoff demonstrated the functioning of the launch pad and operations on ground at Europe's Spaceport. The new custom-built dedicated launch zone was built by France's space agency CNES and allows for a faster turnover of Ariane launches. 

Ariane 6 is Europe’s newest heavy-lift rocket, designed to provide great power and flexibility at a lower cost than its predecessors. The launcher’s configuration – with an upgraded main stage, a choice of either two or four powerful boosters and a new restartable upper stage – will provide Europe with greater efficiency and possibility as it can launch multiple missions into different orbits on a single flight, while its upper stage will deorbit itself at the end of mission. 

ESA’s main roles in the Ariane 6 programme is as contracting authority – managing the budget from Member States participating in the Ariane 6 development programme; and as launch system architect – ensuring that the rocket and launch pad infrastructure work together. 

Ariane 6 is the latest in Europe's Ariane rocket series, taking over from Ariane 5 featuring a modular and versatile design that can launch missions from low-Earth orbit and farther out to deep space. 

Access all the replays from the launch event.  

Access all the launch campaign footage in broadcast quality.  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On Jan. 19, 1965, Gemini 2 successfully completed the second of two uncrewed test flights of the spacecraft and its Titan II booster, clearing the way for the first crewed mission. The 18-minute suborbital mission achieved the primary goals of flight qualifying the Gemini spacecraft, especially its heat shield during a stressful reentry. Recovery forces retrieved the capsule following its splashdown, allowing engineers to evaluate how its systems fared during the flight. The success of Gemini 2 enabled the first crewed mission to fly two months later, beginning a series of 10 flights over the following 20 months. The astronauts who flew these missions demonstrated the rendezvous and docking techniques necessary to implement the Lunar Orbit Rendezvous method NASA chose for the Moon landing mission. They also proved that astronauts could work outside their spacecraft during spacewalks and that spacecraft and astronauts could function for at least eight days, the minimum time for a roundtrip lunar mission. The Gemini program proved critical to fulfill President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to Earth before the end of the 1960s. 
      Cutaway diagram of the Gemini spacecraft. Workers at Launch Pad 19 lift Gemini 2 to mate it with its Titan II rocket. At Pad 19, engineers verify the flight simulators inside Gemini 2. Following the success of Gemini 1 in April 1964, NASA had hoped to fly the second mission before the end of the year and the first crewed mission by January 1965. The two stages of the Titan II rocket arrived at Cape Kennedy from the Martin Marietta factory in Baltimore on July 11, and workers erected it on Launch Pad 19 five days later. A lightning strike at the pad on Aug. 17 invalidated all previous testing and required replacement of some pad equipment. A series of three hurricanes in August and September forced workers to partially or totally unstack the vehicle before stacking it for the final time on Sept. 14. The Gemini 2 spacecraft arrived at Cape Kennedy from its builder, the McDonnell Company in St. Louis, on Sept. 21, and workers hoisted it to the top of the Titan II on Oct. 18. Technical issues delayed the spacecraft’s physical mating to the rocket until Nov. 5. These accumulated delays pushed the launch date back to Dec. 9. 

      The launch abort on Dec. 9, 1964. Liftoff of Gemini 2 from Launch Pad 19 on Jan. 19, 1965. Engineers in the blockhouse monitor the progress of the Titan II during the ascent. Fueling of the rocket began late on Dec. 8, and following three brief holds in the countdown, the Titan’s two first stage engines ignited at 11:41 a.m. EST on Dec. 9. and promptly shut down one second later. Engineers later determined that a cracked valve resulted in loss of hydraulic pressure, causing the malfunction detection system to switch to its backup mode, forcing a shutdown of the engines. Repairs meant a delay into the new year. On Jan. 19, 1965, following a mostly smooth countdown, Gemini 2 lifted off from Pad 19 at 9:04 a.m. EST. 

      The Mission Control Center (MCC) at NASA’s Kennedy Space Center in Florida. In the MCC, astronauts Eugene Cernan, left, Walter Schirra, Gordon Cooper, Donald “Deke” Slayton, and Virgil “Gus” Grissom monitor the Gemini 2 flight. In the Gemini Mission Control Center at NASA’s Kennedy Space Center in Florida, Flight Director Christopher C. Kraft led a team of flight controllers that monitored all aspects of the flight. At the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, a team of controllers led by Flight Director John Hodge passively monitored the flight from the newly built Mission Control Center. They would act as observers for this flight and Gemini 3, the first crewed mission, before taking over full control with Gemini IV, and control all subsequent American human spaceflights. The Titan rocket’s two stages placed Gemini 2 into a suborbital trajectory, reaching a maximum altitude of 98.9 miles, with the vehicle attaining a maximum velocity of 16,709 miles per hour. Within a minute after separating from the Titan’s second stage, Gemini 2 executed a maneuver to orient its heat shield in the direction of flight to prepare for reentry. Flight simulators installed where the astronauts normally would sit controlled the maneuvers. About seven minutes after liftoff, Gemini 2 jettisoned its equipment section, followed by firing of the retrorockets, and then separation of the retrorocket section, exposing the spacecraft’s heat shield. 

      View from a camera mounted on a cockpit window during Gemini 2’s reentry. View from the cockpit window during Gemini 2’s descent on its parachute. Gemini 2 then began its reentry, the heat shield protecting the spacecraft from the 2,000-degree heat generated by friction with the Earth’s upper atmosphere. A pilot parachute pulled away the rendezvous and recovery section. At 10,000 feet, the main parachute deployed, and Gemini 2 descended to a splashdown 2,127 miles from its launch pad, after a flight of 18 minutes 16 seconds. The splashdown took place in the Atlantic Ocean about 800 miles east of San Juan, Puerto Rico, and 25 miles from the prime recovery ship, the U.S.S. Lake Champlain (CVS-39). 

      A U.S. Navy helicopter hovers over the Gemini 2 capsule following its splashdown as a diver jumps into the water. Sailors hoist Gemini 2 aboard the U.S.S. Lake Champlain. U.S. Navy helicopters delivered divers to the splashdown area, who installed a flotation collar around the spacecraft. The Lake Champlain pulled alongside, and sailors hoisted the capsule onto the carrier, securing it on deck one hour forty minutes after liftoff. The spacecraft appeared to be in good condition and arrived back at Cape Kennedy on Jan. 22 for a thorough inspection. As an added bonus, sailors recovered the rendezvous and recovery section. Astronaut Virgil “Gus” Grissom, whom along with John Young NASA had selected to fly the first crewed Gemini mission, said after the splashdown, “We now see the road clear to our flight, and we’re looking forward to it.” Flight Director Kraft called it “very successful.” Gemini Program Manager Charles Matthews predicted the first crewed mission could occur within three months. Gemini 3 actually launched on March 23. 
      Enjoy this NASA video of the Gemini 2 mission. 
      Postscript 
      The Gemini-B capsule and a Manned Orbiting Laboratory (MOL) mockup atop a Titan-IIIC rocket in 1966. The flown Gemini-B capsule on display at the Cape Canaveral Space Force Museum in Florida. Former MOL and NASA astronaut Robert Crippen stands beside the only flown Gemini-B capsule – note the hatch in the heat shield at top. Gemini 2 not only cleared the way for the first crewed Gemini mission and the rest of the program, it also took on a second life as a test vehicle for the U.S. Air Force’s Manned Orbiting Laboratory (MOL). The Air Force modified the spacecraft, including cutting a hatch through its heat shield, renamed it Gemini-B, and launched it on Nov. 3, 1966, atop a Titan IIIC rocket. The test flight successfully demonstrated the hatch in the heat shield design during the capsule’s reentry after a 33-minute suborbital flight. Recovery forces retrieved the Gemini-B capsule in the South Atlantic Ocean and returned it to the Air Force for postflight inspection. This marked the only repeat flight of an American spacecraft intended for human spaceflight until the advent of the space shuttle. Visitors can view Gemini 2/Gemini-B on display at the Cape Canaveral Space Force Museum.  
      View the full article
    • By Amazing Space
      SpaceX STARSHIP 7th Test Flight LIVE
    • By NASA
      With the historic first international space docking mission only six months away, preparations on the ground for the Apollo-Soyuz Test Project (ASTP) intensified. At NASA’s Kennedy Space Center (KSC) in Florida, workers in the Vehicle Assembly Building (VAB) stacked the rocket for the mission, the final Saturn rocket assembled for flight. In the nearby Manned Spacecraft Operations Building (MSOB), the Apollo prime crew of Commander Thomas Stafford, Command Module Pilot Vance Brand, and Docking Module Pilot Donald “Deke” Slayton, and their backups Alan Bean, Ronald Evans, and Jack Lousma conducted vacuum chamber tests of the Command Module (CM), the final Apollo spacecraft prepared for flight.  

      Inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, workers attach fins to the Saturn IB’s first stage. In the VAB, workers secure the first stage of the Saturn IB rocket onto the milk stool, perched on Mobile Launcher-1. Workers lift the second stage of the Saturn IB rocket prior to mating with the first stage. Workers lower a boilerplate Apollo spacecraft onto the Saturn IB rocket. The Saturn IB rocket, serial number SA-210, used for ASTP had a lengthy history. Contractors originally built its two stages in 1967, at a time when NASA planned many more Saturn IB flights to test Apollo spacecraft components in Earth orbit in preparation for the Moon landing. By 1968, however, after four uncrewed Saturn IB launches, only one launched a crew, Apollo 7. Four more Saturn IBs remained on reserve to launch crews as part of the Apollo Applications Program, renamed Skylab in 1970. Without an immediate mission, the two stages of SA-210 entered long-term storage in 1967. Workers later modified and refurbished the stages for ASTP before shipping them to KSC. The first stage arrived in April 1974 and the second stage in November 1972. 
      On Jan. 13, 1975, inside the cavernous VAB, workers stacked the Saturn IB rocket’s first stage onto Mobile Launcher-1 (ML-1), modified from its use to launch Saturn V rockets during the Apollo program with the addition of the milk stool pedestal. The milk stool, a 128-foot tall platform, allowed the Saturn IB to use the same Launch Umbilical Tower as the much larger Saturn V rocket at Launch Complex 39. The next day, workers lowered the second stage onto the first, followed by the Instrument Unit two days later. Finally, on Jan. 17 workers topped off the rocket with a boilerplate Apollo spacecraft while engineers continued testing the flight article in the MSOB. 

      The ASTP Apollo Command and Service Modules arrive at NASA’s Kennedy Space Center (KSC) in Florida. The ASTP Command Module arrives in KSC’s Manned Spacecraft Operations Building. The Command and Service Modules – CSM-111 – arrived at KSC from the Rockwell International plant in Downey, California, on Sept. 8, 1974, by C-5A Galaxy cargo plane. Rockwell had finished building the spacecraft in March 1970 and placed it in storage until July 1972. Modifications for ASTP took place between August 1972 and August 1974, following which Rockwell shipped the spacecraft to KSC. The sign on the shipping container bore the legend “From A to Soyuz – Apollo/Soyuz – Last and the Best.” Workers at KSC towed the modules to the MSOB for inspection and checkout, joined the two modules, and placed the combined spacecraft into a vacuum chamber. 
      The prime Apollo crew of Thomas Stafford, left, Vance Brand, and Donald “Deke” Slayton suit up in preparation for an altitude chamber test in the Command Module (CM). The astronauts inside the CM in the altitude chamber. In the MSOB, the prime and backup ASTP crews conducted tests of their spacecraft in an altitude chamber. After both crews completed simulated runs in December 1974, the prime crew of Stafford, Brand, and Slayton suited up, entered the CM inside the chamber, closed the hatch, and conducted an actual test on Jan. 14, with the chamber simulating altitudes of up to 220,000 feet. Two days later, the backup crew of Bean, Evans, and Lousma completed a similar test. 

      he backup Apollo crew of Alan Bean, left, Ronald Evans, and Jack Lousma suit up in preparation for an altitude chamber test in the Command Module (CM). Workers assist backup crewmember Lousma into the CM. To solve the problem of the Apollo and Soyuz spacecraft operating at different atmospheric pressures and compositions and using incompatible docking mechanisms, engineers designed a Docking Module (DM) that acted as both an airlock and a transfer tunnel and a Docking System (DS) that allowed the two nations’ spacecraft to physically join in space. NASA contracted with Rockwell International to build the DM. Engineers equipped one end of the DM with the standard Apollo probe-and-drogue docking mechanism and the other end with the androgynous system that linked up with its opposite half installed on the modified Soyuz spacecraft. During launch, the DM rested inside the Spacecraft Lunar Module (LM) Adaptor (SLA) atop the rocket’s upper stage, much like the LM during Apollo flights. Once in orbit, the astronauts separated the CSM from the upper stage, turned the spacecraft around, docked with the DM and pulled it free. 
      Workers lower the DM into Chamber B in the Space Environment Simulation Laboratory at NASA’s Johnson Space Center in Houston. Workers lower the DM into Chamber B in the Space Environment Simulation Laboratory at NASA’s Johnson Space Center in Houston. After extensive vacuum testing in Chamber B of the Space Environment Simulation Laboratory at NASA’s Johnson Space Center in Houston, the flight DM arrived at KSC on Oct. 29, 1974, and workers prepared it for more testing in a vacuum chamber in the MSOB. The flight DS arrived at KSC on Jan. 3, 1975, and two weeks later workers installed it on the DM. On Jan. 27, engineers lowered the DM onto the CM in the altitude chamber to conduct a mechanical docking test. Engineers conducted 10 days of joint tests of television and audio equipment to ensure systems compatibility. 

      Workers conduct a docking test of the Docking Module with the Command Module at NASA’s Kennedy Space Center in Florida. NASA support astronaut Robert Overmyer, right, works with engineers during compatibility testing. To be continued… 
      Major events around the world in January 1975: 
      January 5 – Musical The Wiz opens on Broadway, runs for 1,672 performances. 
      January 6 – The game show Wheel of Fortune debuts on NBC. 
      January 8 – Ella Grasso of Connecticut becomes the first elected female governor in the U.S. 
      January 11 – The S-II second stage of the Saturn V rocket that launched Skylab reenters the Earth’s atmosphere over the Indian Ocean. 
      January 12 – The Pittsburg Steelers beat the Minnesota Vikings in Super Bowl IX, played in Tulane Stadium in New Orleans. 
      January 15 – Space Mountain opens at Disney World in Orlando. 
      January 18 – The Jeffersons premieres on CBS. 
      January 22 – Launch of the Landsat-2 Earth resources monitoring satellite. 
      January 30 – Ernő Rubik applies for a patent in Hungary for his Magic Cube, later known as Rubik’s Cube. 
      View the full article
    • By European Space Agency
      This year will mark the European Space Agency’s 50th anniversary and promises to be a landmark year for the European aerospace industry. In addition to milestone events in our programmes, September will also mark 30 years of satellite navigation for Europe. This spring brings the second commercial mission involving a project astronaut to the International Space Station on Axiom Mission 4, while events such as ESA's Living Planet Symposium and the International Paris Air Show will gather the space community face to face.
      View the full article
    • By NASA
      Creating a golden streak in the night sky, a SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander soars upward after liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Wednesday, Jan. 15, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. The Blue Ghost lander will carry 10 NASA science and technology instruments to the lunar surface to further understand the Moon and help prepare for future human missions.Credit: NASA/Frank Michaux A suite of NASA scientific investigations and technology demonstrations is on its way to our nearest celestial neighbor aboard a commercial spacecraft, where they will provide insights into the Moon’s environment and test technologies to support future astronauts landing safely on the lunar surface under the agency’s Artemis campaign.
      Carrying science and tech on Firefly Aerospace’s first CLPS or Commercial Lunar Payload Services flight for NASA, Blue Ghost Mission 1 launched at 1:11 a.m. EST aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The company is targeting a lunar landing on Sunday, March 2.
      “This mission embodies the bold spirit of NASA’s Artemis campaign – a campaign driven by scientific exploration and discovery,” said NASA Deputy Administrator Pam Melroy. “Each flight we’re part of is vital step in the larger blueprint to establish a responsible, sustained human presence at the Moon, Mars, and beyond. Each scientific instrument and technology demonstration brings us closer to realizing our vision. Congratulations to the NASA, Firefly, and SpaceX teams on this successful launch.” 
      Once on the Moon, NASA will test and demonstrate lunar drilling technology, regolith (lunar rocks and soil) sample collection capabilities, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation methods. The data captured could also benefit humans on Earth by providing insights into how space weather and other cosmic forces impact our home planet.  
      “NASA leads the world in space exploration, and American companies are a critical part of bringing humanity back to the Moon,” said Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “We learned many lessons during the Apollo Era which informed the technological and science demonstrations aboard Firefly’s Blue Ghost Mission 1 – ensuring the safety and health of our future science instruments, spacecraft, and, most importantly, our astronauts on the lunar surface. I am excited to see the incredible science and technological data Firefly’s Blue Ghost Mission 1 will deliver in the days to come.”
      As part of NASA’s modern lunar exploration activities, CLPS deliveries to the Moon will help humanity better understand planetary processes and evolution, search for water and other resources, and support long-term, sustainable human exploration of the Moon in preparation for the first human mission to Mars. 
      There are 10 NASA payloads flying on this flight:
      Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will characterize heat flow from the interior of the Moon by measuring the thermal gradient and conductivity of the lunar subsurface. It will take several measurements to about a 10-foot final depth using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Lead organization: Texas Tech University  Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. Lead organization: Honeybee Robotics   Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon. The retroreflector that will fly on this mission could also collect data to understand various aspects of the lunar interior and address fundamental physics questions. Lead organization: University of Maryland Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. The RAC instrument will measure accumulation rates of lunar regolith on the surfaces of several materials including solar cells, optical systems, coatings, and sensors through imaging to determine their ability to repel or shed lunar dust. The data captured will allow the industry to test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace  Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but now will demonstrate the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University  Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. The EDS technology is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center  Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and the Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact it. Lead organizations: NASA’s Goddard Space Flight Center, Boston University, and Johns Hopkins University  Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from Global Navigation Satellite System constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of rocket plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier payloads are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machine’s first CLPS delivery. Lead organization: NASA’s Langley Research Center  “With 10 NASA science and technology instruments launching to the Moon, this is the largest CLPS delivery to date, and we are proud of the teams that have gotten us to this point,” said Chris Culbert, program manager for the Commercial Lunar Payload Services initiative at NASA’s Johnson Space Center in Houston. “We will follow this latest CLPS delivery with more in 2025 and later years. American innovation and interest to the Moon continues to grow, and NASA has already awarded 11 CLPS deliveries and plans to continue to select two more flights per year.”
      Firefly’s Blue Ghost lander is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the Moon’s near side. The NASA science on this flight will gather valuable scientific data studying Earth’s nearest neighbor and helping pave the way for the first Artemis astronauts to explore the lunar surface later this decade.
      Learn more about NASA’s CLPS initiative at:
      https://www.nasa.gov/clps
      -end-
      Amber Jacobson / Karen Fox
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / karen.c.fox@nasa.gov
      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Jan 15, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon Johnson Space Center Kennedy Space Center Lunar Science Science & Research Science Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...