Jump to content

Ariane 6 first liftoff


Recommended Posts

Ariane_6_first_liftoff_card_full.jpg Video: 03:04:20

Europe’s new rocket Ariane 6 powered Europe into space taking with it a varied selection of experiments, satellites, payload deployers and reentry demonstrations that represent thousands across Europe, from students to industry and experienced space actors. 

This inaugural flight, designated VA262, is a demonstration flight to show the capabilities and prowess of Ariane 6 in escaping Earth's gravity and operating in space. Nevertheless, it had several passengers on board. 

Ariane 6 was built by prime contractor and design authority ArianeGroup. In addition to the rocket, the liftoff demonstrated the functioning of the launch pad and operations on ground at Europe's Spaceport. The new custom-built dedicated launch zone was built by France's space agency CNES and allows for a faster turnover of Ariane launches. 

Ariane 6 is Europe’s newest heavy-lift rocket, designed to provide great power and flexibility at a lower cost than its predecessors. The launcher’s configuration – with an upgraded main stage, a choice of either two or four powerful boosters and a new restartable upper stage – will provide Europe with greater efficiency and possibility as it can launch multiple missions into different orbits on a single flight, while its upper stage will deorbit itself at the end of mission. 

ESA’s main roles in the Ariane 6 programme is as contracting authority – managing the budget from Member States participating in the Ariane 6 development programme; and as launch system architect – ensuring that the rocket and launch pad infrastructure work together. 

Ariane 6 is the latest in Europe's Ariane rocket series, taking over from Ariane 5 featuring a modular and versatile design that can launch missions from low-Earth orbit and farther out to deep space. 

Access all the launch campaign footage in broadcast quality.  

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Tests on Earth appear to confirm how the Red Planet’s spider-shaped geologic formations are carved by carbon dioxide.
      Spider-shaped features called araneiform terrain are found in the southern hemisphere of Mars, carved into the landscape by carbon dioxide gas. This 2009 image taken by NASA’s Mars Reconnaissance Orbiter shows several of these distinctive formations within an area three-quarters of a mile (1.2 kilometers) wide. NASA/JPL-Caltech/University of Arizona Dark splotches seen in this example of araneiform terrain captured by NASA’s Mars Reconnaissance Orbiter in 2018 are believed to be soil ejected from the surface by carbon dioxide gas plumes. A set of experiments at JPL has sought to re-create these spider-like formations in a lab. NASA/JPL-Caltech/University of Arizona Since discovering them in 2003 via images from orbiters, scientists have marveled at spider-like shapes sprawled across the southern hemisphere of Mars. No one is entirely sure how these geologic features are created. Each branched formation can stretch more than a half-mile (1 kilometer) from end to end and include hundreds of spindly “legs.” Called araneiform terrain, these features are often found in clusters, giving the surface a wrinkled appearance.
      The leading theory is that the spiders are created by processes involving carbon dioxide ice, which doesn’t occur naturally on Earth. Thanks to experiments detailed in a new paper published in The Planetary Science Journal, scientists have, for the first time, re-created those formation processes in simulated Martian temperatures and air pressure.
      Here’s a look inside of JPL’s DUSTIE, a wine barrel-size chamber used to simulate the temperatures and air pressure of other planets – in this case, the carbon dioxide ice found on Mars’ south pole. Experiments conducted in the chamber confirmed how Martian formations known as “spiders” are created.NASA/JPL-Caltech “The spiders are strange, beautiful geologic features in their own right,” said Lauren Mc Keown of NASA’s Jet Propulsion Laboratory in Southern California. “These experiments will help tune our models for how they form.”
      The study confirms several formation processes described by what’s called the Kieffer model: Sunlight heats the soil when it shines through transparent slabs of carbon dioxide ice that built up on the Martian surface each winter. Being darker than the ice above it, the soil absorbs the heat and causes the ice closest to it to turn directly into carbon dioxide gas — without turning to liquid first — in a process called sublimation (the same process that sends clouds of “smoke” billowing up from dry ice). As the gas builds in pressure, the Martian ice cracks, allowing the gas to escape. As it seeps upward, the gas takes with it a stream of dark dust and sand from the soil that lands on the surface of the ice.
      When winter turns to spring and the remaining ice sublimates, according to the theory, the spiderlike scars from those small eruptions are what’s left behind.
      These formations similar to the Red Planet’s “spiders” appeared within Martian soil simulant during experiments in JPL’s DUSTIE chamber. Carbon dioxide ice frozen within the simulant was warmed by a heater below, turning it back into gas that eventually cracked through the frozen top layer and formed a plume.NASA/JPL-Caltech Re-Creating Mars in the Lab
      For Mc Keown and her co-authors, the hardest part of conducting these experiments was re-creating conditions found on the Martian polar surface: extremely low air pressure and temperatures as low as minus 301 degrees Fahrenheit (minus 185 degrees Celsius). To do that, Mc Keown used a liquid-nitrogen-cooled test chamber at JPL, the Dirty Under-vacuum Simulation Testbed for Icy Environments, or DUSTIE.
      “I love DUSTIE. It’s historic,” Mc Keown said, noting that the wine barrel-size chamber was used to test a prototype of a rasping tool designed for NASA’s Mars Phoenix lander. The tool was used to break water ice, which the spacecraft scooped up and analyzed near the planet’s north pole.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video shows Martian soil simulant erupting in a plume during a JPL lab experiment that was designed to replicate the process believed to form Martian features called “spiders.” When a researcher who had tried for years to re-create these conditions spotted this plume, she was ecstatic. NASA/JPL-Caltech For this experiment, the researchers chilled Martian soil simulant in a container submerged within a liquid nitrogen bath. They placed it in the DUSTIE chamber, where the air pressure was reduced to be similar to that of Mars’ southern hemisphere. Carbon dioxide gas then flowed into the chamber and condensed from gas to ice over the course of three to five hours. It took many tries before Mc Keown found just the right conditions for the ice to become thick and translucent enough for the experiments to work.
      Once they got ice with the right properties, they placed a heater inside the chamber below the simulant to warm it up and crack the ice. Mc Keown was ecstatic when she finally saw a plume of carbon dioxide gas erupting from within the powdery simulant.
      “It was late on a Friday evening and the lab manager burst in after hearing me shrieking,” said Mc Keown, who had been working to make a plume like this for five years. “She thought there had been an accident.”
      The dark plumes opened holes in the simulant as they streamed out, spewing simulant for as long as 10 minutes before all the pressurized gas was expelled.
      The experiments included a surprise that wasn’t reflected in the Kieffer model: Ice formed between the grains of the simulant, then cracked it open. This alternative process might explain why spiders have a more “cracked” appearance. Whether this happens or not seems dependent on the size of soil grains and how embedded water ice is underground.
      “It’s one of those details that show that nature is a little messier than the textbook image,” said Serina Diniega of JPL, a co-author of the paper.
      What’s Next for Plume Testing
      Now that the conditions have been found for plumes to form, the next step is to try the same experiments with simulated sunlight from above, rather than using a heater below. That could help scientists narrow down the range of conditions under which the plumes and ejection of soil might occur.
      There are still many questions about the spiders that can’t be answered in a lab. Why have they formed in some places on Mars but not others? Since they appear to result from seasonal changes that are still occurring, why don’t they seem to be growing in number or size over time? It’s possible that they’re left over from long ago, when the climate was different on Mars— and could therefore provide a unique window into the planet’s past.
      For the time being, lab experiments will be as close to the spiders as scientists can get. Both the Curiosity and Perseverance rovers are exploring the Red Planet far from the southern hemisphere, which is where these formations appear (and where no spacecraft has ever landed). The Phoenix mission, which landed in the northern hemisphere, lasted only a few months before succumbing to the intense polar cold and limited sunlight.
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-122
      Share
      Details
      Last Updated Sep 11, 2024 Related Terms
      Mars Jet Propulsion Laboratory Explore More
      5 min read NASA JPL Scientists, Engineers Collaborate With Artists for Exhibition
      Article 2 days ago 6 min read NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water
      Mars was once a very wet planet as is evident in its surface geological features.…
      Article 6 days ago 5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      On Sept. 10, 2009, the Japan Aerospace Exploration Agency (JAXA) launched its first cargo delivery spacecraft, the H-II Transfer Vehicle-1 (HTV-1), to the International Space Station. The HTV cargo vehicles, also called Kounotori, meaning white stork in Japanese, not only maintained the Japanese Experiment Module Kibo but also resupplied the space station in general with pressurized and unpressurized cargo and payloads. Following its rendezvous with the space station, Expedition 20 astronauts grappled and berthed HTV-1 on Sept. 17, and spent the next month transferring its 9,900 pounds of internal and external cargo to the space station and filling the HTV-1 with trash and unneeded equipment. They released the craft on Oct. 30 and ground controllers commanded it to a destructive reentry on Nov. 1.

      Left and middle: Two views of the HTV-1 Kounotori cargo spacecraft during prelaunch processing at the Tanegashima Space Center in Japan. Right: Schematic illustration showing the HTV’s major components. Image credits: courtesy JAXA.
      The HTV formed part of a fleet of cargo vehicles that at the time included NASA’s space shuttle until its retirement in 2011, Roscosmos’ Progress, and the European Space Agency’s (ESA) Automated Transfer Vehicle that flew five missions between 2008 and 2015. The SpaceX Cargo Dragon and Orbital (later Northrup Grumman) Cygnus commercial cargo vehicles supplemented the fleet starting in 2012 and 2013, respectively. The HTV weighed 23,000 pounds empty and could carry up to 13,000 pounds of cargo, although on this first flight carried only 9,900 pounds. The vehicle included both a pressurized and an unpressurized logistics carrier. Following its rendezvous with the space station, it approached to within 33 feet, at which point astronauts grappled it with the station’s robotic arm and berthed it to the Harmony Node 2 module’s Earth facing port. Space station managers added two flights to the originally planned seven, with the last HTV flying in 2020. An upgraded HTV-X vehicle will soon make its debut to carry cargo to the space station, incorporating the lessons learned from the nine-mission HTV program.

      Left: Technicians place HTV-1 inside its launch protective shroud at the Tanegashima Space Center. Middle left: Workers truck the HTV-1 to Vehicle Assembly Building (VAB). Middle right: The HTV-1 atop its H-II rolls out of the VAB on its way to the launch pad. Right: The HTV-1 mission patch. Image credits: courtesy JAXA.
      Prelaunch processing of HTV-1 took place at the Tanegashima Space Center, where engineers inspected and assembled the spacecraft’s components. Workers installed the internal cargo into the pressurized logistics carrier and external payloads onto the External Pallet that they installed into the unpressurized logistics carrier. HTV-1 carried two external payloads, the Japanese Superconducting submillimeter-wave Limb Emission Sounder (SMILES) and the U.S. Hyperspectral Imager for Coastal Ocean (HICO)-Remote Atmospheric and Ionospheric detection System (RAIDS) Experiment Payload (HREP). On Aug. 23, 2009, workers encapsulated the assembled HTV into its payload shroud and a week later moved it into the Vehicle Assembly Building (VAB), where they mounted it atop the H-IIB rocket. Rollout from the VAB to the pad took place on the day of launch.

      Liftoff of HTV-1 from the Tanegashima Space Center in Japan. Image credit: courtesy JAXA.

      Left: The launch control center at the Tanegahsima Space Center in Japan. Middle: The mission control room at the Tsukuba Space Center in Japan. Image credits: courtesy JAXA. Right: The HTV-1 control team in the Mission Control Center at NASA’s Johnson Space Center in Houston.
      On Sept. 10 – Sept. 11 Japan time – HTV-1 lifted off its pad at Tanegashima on the maiden flight of the H-IIB rocket. Controllers in Tanegashima’s launch control center monitored the flight until HTV-1 separated from the booster’s second stage. At that point, HTV-1 automatically activated its systems and established communications with NASA’s Tracking and Data Relay Satellite System. Control of the flight shifted to the mission control room at the Tsukuba Space Center outside Tokyo. Controllers in the Mission Control Center at NASA’s Johnson Space Center in Houston also monitored the mission’s progress.

      Left: HTV-1 approaches the space station. Middle: NASA astronaut Nicole P. Stott grapples HTV-1 with the station’s robotic arm and prepares to berth it to the Node 2 module. Right: European Space Agency astronaut Frank DeWinne, left, Stott, and Canadian Space Agency astronaut Robert Thirsk in the Destiny module following the robotic operations to capture and berth HTV-1.
      Following several days of systems checks, HTV-1 approached the space station on Sept. 17. Members of Expedition 20 monitored its approach, as it stopped within 33 feet of the orbiting laboratory. Using the space station’s Canadarm2 robotic arm, Expedition 20 Flight Engineer and NASA astronaut Nicole P. Stott grappled HTV-1. Fellow crew member Canadian Space Agency astronaut Robert Thirsk berthed the vehicle on the Harmony Node 2 module’s Earth-facing port. The following day, the Expedition 20 crew opened the hatch to HTV-1 to begin the cargo transfers.

      Left: Canadian Space Agency astronaut Robert Thirsk inside HTV-1. Middle: NASA astronaut Nicole P. Stott transferring cargo from HTV-1 to the space station. Right: Stott in HTV-1 after completion of much of the cargo transfer.
      Over the next several weeks, the Expedition 20 and 21 crews transferred more than 7,900 pounds of cargo from the pressurized logistics carrier to the space station. The items included food, science experiments, robotic arm and other hardware for the Kibo module, crew supplies including clothing, toiletries, and personal items, fluorescent lights, and other supplies. They then loaded the module with trash and unneeded equipment, altogether weighing 3,580 pounds.

      Left: The space station’s robotic arm grapples the Exposed Pallet (EP) to transfer it to the Japanese Experiment Module-Exposed Facility (JEM-EF). Right: Canadian Space Agency astronaut Robert Thirsk and NASA astronaut Nicole P. Stott operate the station’s robotic arm to temporarily transfer the EP and its payloads to the JEM-EF.

      Left: The Japanese robotic arm grapples one of the payloads from the Exposed Pallet (EP) to transfer it to the Japanese Experiment Module-Exposed Facility (JEM-EF). Right: European Space Agency astronaut Frank DeWinne, left, and NASA astronaut Nicole P. Stott operate the Japanese robotic arm from inside the JEM.
      Working as a team, NASA astronauts Stott and Michael R. Barratt along with Thirsk and ESA astronaut Frank DeWinne performed the transfer of the external payloads. On Sept. 23, using the station’s robotic arm, they grappled the Exposed Pallet (EP) and removed it from HTV-1’s unpressurized logistics carrier, handing it off to the Japanese remote manipulator system arm that temporarily stowed it on the JEM’s Exposed Facility (JEM-EF). The next day, using the Japanese arm, DeWinne and Stott transferred the SMILES and HREP experiments to their designated locations on the JEM-EF. On Sept. 25, they grappled the now empty EP and placed it back into HTV-1’s unpressurized logistics carrier.

      Left: Astronauts transfer the empty Exposed Pallet back to HTV-1. Middle: NASA astronaut Nicole P. Stott poses in front of the now-closed hatch to HTV-1. Right: European Space Agency astronaut Frank DeWinne, left, and Stott operate the station’s robotic arm to grapple HTV-1 for release.

      Left: The space station’s robotic arm grapples HTV-1 in preparation for its unberthing. Middle: The station’s robotic arm has unberthed HTV-1 in preparation for its release. Right: The arm has released HTV-1 and it begins its separation from the space station.
      Following completion of all the transfers, Expedition 21 astronauts aboard the space station closed the hatch to HTV-1 on Oct. 29. The next day, Stott and DeWinne grappled the vehicle and unberthed it from Node 2. While passing over the Pacific Ocean, they released HTV-1 and it began its departure maneuvers from the station. On Nov. 1, the flight control team in Tsukuba sent commands to HTV-1 to execute three deorbit burns. The vehicle reentered the Earth’s atmosphere, burning up off the coast of New Zealand, having completed the highly successful 52-day first HTV resupply mission. Eight more HTV missions followed, all successful, with HTV-9 completing its mission in August 2020.
      Explore More
      9 min read 30 Years Ago: STS-64 Astronauts Test a Spacewalk Rescue Aid
      Article 2 hours ago 5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
      Article 5 days ago 8 min read 40 Years Ago: STS-41D – First Flight of Space Shuttle Discovery
      Article 7 days ago View the full article
    • By European Space Agency
      Video: 00:06:50 The first of four satellites that make up ESA’s Cluster mission is coming safely back down to Earth, marking a brilliant end to this remarkable mission.
      The satellite’s orbit was tweaked back in January to target a region as far as possible from populated regions. This ensures that any spacecraft parts that survive the reentry will fall over open ocean.
      During 24 years in space, Cluster has sent back precious data on how the Sun interacts with Earth’s magnetic field, helping us better understand and forecast potentially dangerous space weather. 
      With this first ever targeted reentry, Cluster goes down in history for a different reason, taking ESA well beyond international space safety standards and helping ensure the long-term sustainability of space activities.
      View the full article
    • By European Space Agency
      Image: ESA’s Metal 3D Printer has produced the first metal part ever created in space. 
      The technology demonstrator, built by Airbus and its partners, was launched to the International Space Station at the start of this year, where ESA astronaut Andreas Mogensen installed the payload in the European Drawer Rack of ESA’s Columbus module. In August, the printer successfully printed the first 3D metal shape in space.  
      This product, along with three others planned during the rest of the experiment, will return to Earth for quality analysis: two of the samples will go to ESA’s technical heart in the Netherlands (ESTEC), another will go to ESA’s astronaut training centre in Cologne (EAC) for use in the LUNA facility, and the fourth will go to the Technical University of Denmark (DTU). 
      As exploration of the Moon and Mars will increase mission duration and distance from Earth, resupplying spacecraft will be more challenging.  Additive manufacturing in space will give autonomy for the mission and its crew, providing a solution to manufacture needed parts, to repair equipment or construct dedicated tools, on demand during the mission, rather than relying on resupplies and redundancies. 
      ESA’s technology demonstrator is the first to successfully print a metal component in microgravity conditions. In the past, the International Space Station has hosted plastic 3D printers.
      View the full article
    • By NASA
      On Aug. 30, 1984, space shuttle Discovery lifted off on the STS-41D mission, joining NASA’s fleet as the third space qualified orbiter. The newest shuttle incorporated newer technologies making it significantly lighter than its two predecessors. Discovery lofted the heaviest payload up to that time in shuttle history. The six-person crew included five NASA astronauts and the first commercial payload specialist. During the six-day mission, the crew deployed a then-record three commercial satellites, tested an experimental solar array, and ran a commercial biotechnology experiment. The astronauts recorded many of the activities using a large format film camera, the scenes later incorporated into a motion picture for public engagement. The mission marked the first of Discovery’s 39 trips to space, the most of any orbiter.

      Left: Space shuttle Discovery rolls out of Rockwell’s Palmdale, California, facility. Middle: Discovery atop the Shuttle Carrier Aircraft during the cross-country ferry flight. Right: Discovery arrives at NASA’s Kennedy Space Center in Florida.
      Space shuttle Discovery, the third space-qualified orbiter in NASA’s fleet and named after several historical ships of exploration, incorporated manufacturing lessons learned from the first orbiters. In addition, through the use of more advanced materials, the new vehicle weighed nearly 8,000 pounds less than its sister ship Columbia and 700 pounds less than Challenger. Discovery rolled out of Rockwell International’s plant in Palmdale, California, on Oct. 16, 1983. Five of the six crew members assigned to its first flight attended the ceremony. Workers trucked Discovery overland from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base (AFB), where they mounted it atop a Shuttle Carrier Aircraft (SCA), a modified Boeing 747, for the transcontinental ferry flight to NASA’s Kennedy Space Center (KSC) in Florida. Discovery arrived at KSC on Nov. 9 following a two-day stopover at Vandenberg Air Force, now Space Force Base, in California.

      Left: STS-41D crew patch. Middle: Official photograph of the STS-41D crew of R. Michael “Mike” Mullane, front row left, Steven A. Hawley, Henry “Hank” W. Hartsfield, and Michael L. Coats; Charles D. Walker, back row left, and Judith A. Resnik. Right: Payloads installed in Discovery’s payload bay for the STS-41D mission include OAST-1, top, SBS-4, Telstar 3C, and Leasat-2.
      To fly Discovery’s first flight, originally designated STS-12 and later renamed STS-41D, in February 1983 NASA assigned Commander Henry W. Hartsfield, a veteran of STS-4, and first-time flyers Pilot Michael L. Coats, and Mission Specialists R. Michael Mullane, Steven A. Hawley, and Judith A. Resnik, all from the 1978 class of astronauts and making their first spaceflights. In May 1983, NASA announced the addition of Charles D. Walker, an employee of the McDonnell Douglas Corporation, to the crew, flying as the first commercial payload specialist. He would operate the company’s Continuous Flow Electrophoresis System (CFES) experiment. The mission’s primary payloads included the Leasat-1 (formerly known as Syncom IV-1) commercial communications satellite and OAST-1, three experiments from NASA’s Office of Aeronautics and Space Technology, including the Solar Array Experiment, a 105-foot long lightweight deployable and retractable solar array. Following the June 1984 launch abort, NASA canceled the STS-41F mission, combining its payloads with STS-41D’s, resulting in three communications satellites – SBS-4 for Small Business Systems, Telstar 3C for AT&T, and Leasat 2 (Syncom IV-2) for the U.S. Navy – launching on the flight. The combined cargo weighed 41,184 pounds, the heaviest of the shuttle program up to that time. A large format IMAX® camera, making its second trip into space aboard the shuttle, flew in the middeck to film scenes inside the orbiter and out the windows.

      Left: First rollout of Discovery from the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Right: The June 26 launch abort.
      The day after its arrival at KSC, workers towed Discovery to the Orbiter Processing Facility (OPF) to begin preparing it for its first space flight. They towed it to the Vehicle Assembly Building (VAB) on May 12, 1984, for mating with its External Tank (ET) and Solid Rocket Boosters (SRBs). The completed stack rolled out to Launch Pad 39A a week later. On June 2, engineers successfully completed an 18-second Flight Readiness Firing of Discovery’s main engines. Post test inspections revealed a debonding of a thermal shield in main engine number 1’s combustion chamber, requiring its replacement at the pad. The work pushed the planned launch date back three days to June 25. The failure of the shuttle’s backup General Purpose Computer (GPC) delayed the launch by one day. The June 26 launch attempt ended just four seconds before liftoff, after two of the main engines had already ignited. The GPC detected that the third engine had not started and shut all three down. It marked the first time a human spaceflight launch experienced an abort after the start of its engines since Gemini VI in October 1965. The abort necessitated a rollback to the VAB on July 14 where workers demated Discovery from the ET and SRBs. Engineers replaced the faulty engine, and Discovery rolled back out to the launch pad on Aug. 9 for another launch attempt. The six-person crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the actual countdown to launch, on Aug. 15. A software issue delayed the first launch attempt on Aug. 29 by one day.

      Left: The STS-41D crew pose at Launch Pad 39A at NASA’s Kennedy Space Center in Florida following the Terminal Countdown Demonstration Test. Right: Liftoff of Discovery on the STS-41D mission.
      Finally, on Aug. 30, 1984, Discovery roared off its launch pad on a pillar of flame and within 8 and a half minutes entered orbit around the Earth. The crew got down to work and on the first day Mullane and Hawley deployed the SBS-4 satellite. On the second day in space, they deployed Leasat, the first satellite designed specifically to be launched from the shuttle. On the third day, they deployed the Telstar satellite, completing the satellite delivery objectives of the mission. Resnik deployed the OAST-1 solar array to 70% of its length to conduct dynamic tests on the structure. On the fourth day, she deployed the solar array to its full length and successfully retracted it, completing all objectives for that experiment.

      The deployment of the SBS-4, left, Leasat-2, and Telstar 3C satellites during STS-41D.
      Walker remained busy with the CFES, operating the unit for about 100 hours, and although the experiment experienced two unexpected shutdowns, he processed about 85% of the planned samples. Hartsfield and Coats exposed two magazines and six rolls of IMAX® film, recording OAST-1 and satellite deployments as well as in-cabin crew activities. Clips from the mission appear in the 1985 IMAX® film “The Dream is Alive.” On the mission’s fifth day, concern arose over the formation of ice on the orbiter’s waste dump nozzle. The next day, Hartsfield used the shuttle’s robotic arm to dislodge the large chunk of ice.

      Left: Payload Specialist Charles D. Walker in front of the Continuous Flow Experiment System. Middle: Henry “Hank” W. Hartsfield loading film into the IMAX® camera. Right: The OAST-1 Solar Array Experiment extended from Discovery’s payload bay.
      On Sep. 5, the astronauts closed Discovery’s payload bay doors in preparation for reentry. They fired the shuttle’s Orbital Maneuvering System engines to slow their velocity and begin their descent back to Earth. Hartsfield guided Discovery to a smooth landing at Edwards AFB in California, completing a flight of 6 days and 56 minutes. The crew had traveled 2.5 million miles and orbited the Earth 97 times.

      Left: The STS-41D crew pose in Discovery’s middeck. Right: Space shuttle Discovery makes a perfect landing at Edwards Air Force Base in California to end the STS-41D mission. 
      By Sept. 10, workers had returned Discovery to KSC to prepare it for its next mission, STS-51A, in November 1984. During its lifetime, Discovery flew a fleet leading 39 missions, making its final trip to space in February 2011. It flew both return to flight missions, STS-26 in 1988 and STS-114 in 2005. It launched the Hubble Space Telescope in 1990 and flew two of the missions to service the facility. Discovery flew two mission to Mir, docking once. It completed the first docking to the International Space Station in 1999 and flew a total of 13 assembly and resupply missions to the orbiting lab. By its last mission, Discovery had traveled 149 million miles, completed 5,830 orbits of the Earth, and spent a cumulative 365 days in space in the span of 27 years. The public can view Discovery on display at the National Air and Space Museum’s Stephen F. Udvar-Hazy Center in Chantilly, Virginia.
      Read recollections of the STS-41D mission by Hartsfield, Coats, Mullane, Hawley, and Walker in their oral histories with the JSC History Office. Enjoy the crew’s narration of a video about the STS-41D mission.
      Explore More
      6 min read 235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus
      Article 5 days ago 11 min read 15 Years Ago: STS-128 Delivers Cargo to Enable Six-Person Space Station Crew
      Article 6 days ago 10 min read 40 Years Ago: President Reagan Announces Teacher in Space Project
      Article 1 week ago View the full article
  • Check out these Videos

×
×
  • Create New...