Members Can Post Anonymously On This Site
Sols 4236-4238: One More Time… for Contact Science at Mammoth Lakes
-
Similar Topics
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 2 min read
Sols 4458-4460: Winter Schminter
NASA’s Mars rover Curiosity captured this image of the Texoli butte, a Martian landmark about 525 feet (160 meters) tall, with many layers that scientists are studying to learn more about the formation of this region of the Red Planet. The butte is on the 3-mile-high Mount Sharp, inside Gale Crater, where Curiosity landed and has been exploring since 2012. The rover acquired this image using its Left Navigation Camera on sol 4456, or Martian day 4,456 of the Mars Science Laboratory mission, on Feb. 17, 2025, at 17:51:56 UTC. NASA/JPL-Caltech Earth planning date: Tuesday, Feb. 18, 2025
During today’s unusual-for-MSL Tuesday planning day (because of the U.S. holiday on Monday), we planned activities under new winter heating constraints. Operating Curiosity on Mars requires attention to a number of factors — power, data volume, terrain roughness, temperature — that affect rover operability and safety. Winter means more heating to warm up the gears and mechanisms within the rover and the instruments, but energy that goes to heating means less energy for science observations. Nevertheless, we (and Curiosity) were up to the task of balancing heating and science, and planned enough observations to warm the science team’s hearts.
We fit in DRT, APXS, and MAHLI on two different bedrock targets, “Chumash Trail” and “Wheeler Gorge,” which have different fracturing and layering features. In the workspace, ChemCam targeted a clean vertical exposure of layered bedrock at “Sierra Madre” and a lumpy-looking patch of resistant nodules at “Chiquito Basin.”
The topography of the local terrain and our end-of-drive position after the weekend fortuitously lined up to give us a view of an exposure of the Marker Band, which we first explored on the other side of Gediz Vallis Ridge. Having a view of another exposure of this distinctive horizon helps give us further insight into its origin, so we included both RMI and Mastcam mosaics of the exposure.
Documenting a feature that, unlike the Marker Band, has been and will be in our sights for a long time — “Texoli” butte (pictured above) — was the goal of additional Mastcam and ChemCam imaging. Observations of potential sedimentary structures on the flank of Texoli motivated acquisition of an RMI mosaic, and a chance to capture structures along its southeast face inspired a Mastcam mosaic. Good exposures of additional nearby bedrock structures at “Mount Lukens” and “Chantry Flat” drew the eye of Mastcam, while another small mosaic focused on the kind of linear troughs in the sand we often see bordering bedrock slabs. Environmental observations included Navcam cloud and dust-devil movies, Mastcam observations of dust in the atmosphere, and REMS and RAD measurements spread across the three sols of the plan.
Written by Michelle Minitti, Planetary Geologist at Framework
Share
Details
Last Updated Feb 20, 2025 Related Terms
Blogs Explore More
3 min read Cookies, Cream, and Crumbling Cores
Article
3 days ago
2 min read Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science
Article
4 days ago
2 min read Sols 4452-4453: Keeping Warm and Keeping Busy
Article
7 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By European Space Agency
The second of the Meteosat Third Generation (MTG) satellites and the first instrument for the Copernicus Sentinel-4 mission are fully integrated and, having completed their functional and environmental tests, they are now ready to embark on their journey to the US for launch this summer.
View the full article
-
By NASA
2 min read
NASA Science: Being Responsive to Executive Orders
February 18, 2025
To the NASA Science Community –
As the nation’s leader in Earth and space science, NASA Science operates within the broader context of the federal government and its priorities. As part of the Executive Branch, we are always responsive to the direction set by the Administration, including executive orders and policy guidance that relate to our programs and activities.
We are working as quickly as possible to implement these Executive Orders and related policies. We understand that these priorities can have tangible effects on our community, from potential changes in solicitations and mission planning to impacts on grants and research programs. We recognize that uncertainty can be challenging but we are committed to keeping you as informed as possible as we comply with these changes.
Our goal remains steadfast: to support groundbreaking science that advances knowledge and benefits society. As we work through these transitions, we are engaging with stakeholders, assessing implications, and ensuring that we continue to deliver on NASA’s science mission.
We appreciate your patience and dedication, and we will share more details as they become available. Thank you for your continued partnership in advancing NASA Science for the benefit of the nation.
-Nicky Fox
Associate Administrator, NASA Science Mission Directorate
Share
Details
Last Updated Feb 18, 2025 Related Terms
Science Mission Directorate Explore More
5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging
Article
4 hours ago
2 min read Hubble Captures a Cosmic Cloudscape
Article
4 days ago
5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
Article
2 weeks ago
View the full article
-
By NASA
The 2024 Annual Highlights of Results from the International Space Station is now available. This new edition contains updated bibliometric analyses, a list of all the publications documented in fiscal year 2024, and synopses of the most recent and recognized scientific findings from investigations conducted on the space station. These investigations are sponsored by NASA and all international partners – CSA (Canadian Space Agency), ESA (European Space Agency), JAXA (Japan Aerospace Exploration Agency), and the State Space Corporation Roscosmos (Roscosmos) – for the advancement of science, technology, and education.
Dr. Dmitry Oleynikov remotely operates a surgical robot aboard the Space Station using controls at the Virtual Incision offices in Lincoln, Nebraska. Robotic Surgery Tech Demo tests techniques for performing a simulated surgical procedure in microgravity using a miniature surgical robot that can be remotely controlled from Earth. Credits: University of Nebraska-Lincoln Between Oct. 1, 2023, and Sept. 30, 2024, more than 350 publications were reported. With approximately 40% of the research produced in collaboration between more than two countries and almost 80% of the high-impact studies published in the past seven years, station has continued to generate compelling and influential science above national and global standards since 2010.
The results achieved from station research provide insights that advance the commercialization of space and benefit humankind.
Some of the findings presented in this edition include:
Improved machine learning algorithms to detect space debris (Italian Space Agency, Roscosmos, ESA) Visuospatial processing before and after spaceflight (CSA) Metabolic changes during fasting intervals in astronauts (ESA) Vapor bubble production for the improvement of thermal systems (NASA) Immobilization of particles for the development of optical materials (JAXA) Maintained function of cardiac 3D stem cells after weeks of exposure to space (NASA) The content in the Annual Highlights of Results from the International Space Station has been reviewed and approved by the International Space Station Program Science Forum, a team of scientists and administrators representing NASA and international partners that are dedicated to planning, improving, and communicating the research operated on the space station.
[See the list of Station Research Results publications here and find the current edition of the Annual Highlights of Results here.]
Keep Exploring Discover More Topics
Space Station Research Results
Space Station Research and Technology
ISS National Laboratory
Opportunities and Information for Researchers
View the full article
-
By NASA
Modeling properties of thunderstorm discharges
Researchers report detailed physical properties of different types of corona discharges, including single- and multi-pulse blue discharges linked to powerful but short-lived electrical bursts near the tops of clouds. These details provide a reference for further investigation into the physical mechanisms behind these discharges and their role in the initiation of lightning, an important problem in lightning physics.
An ESA (European Space Agency) instrument used to study thunderstorms, Atmosphere-Space Interactions Monitor (ASIM) provides insights into their role in Earth’s atmosphere and climate, including mechanisms behind the creation of lightning. Understanding how thunderstorms and lightning disturb the upper atmosphere could improve atmospheric models along with climate and weather predictions. These high-altitude discharges also affect aircraft and spacecraft safety.
An artist’s impression of a blue jet as observed from the International Space Station.Mount Visual/University of Bergen/DTU Space Evaluating effects of climate change on oceans
Researchers conclude that the space station’s ECOSTRESS instrument yields highly accurate sea surface temperature data. Given the instrument’s global coverage and high spatial resolution, these data have potential use in studies of biological and physical oceanography to evaluate regional and local effects of climate change.
ECOSTRESS resolves oceanographic features not detectable in imagery from NOAA’s Visible Infrared Imaging Radiometer Suite satellite, and has open-ocean coverage, unlike Landsat. Satellites are a fundamental tool to measure sea surface temperatures, which are rising across all oceans due to atmospheric warming induced by climate change.
The ECOSTRESS instrument, the white box in the center, is visible on the outside of the station.NASA Describing a gamma ray burst
Researchers report detailed observations and analysis of emissions from an exceptionally bright gamma ray burst (GRB), 210619B, detected by the station’s ASIM and other satellite and ground-based instruments. These observations could be useful in determining various properties of GRBs and how they change during different phases.
Believed to be generated by the collapse of massive stars, GRBs are the brightest, most explosive transient electromagnetic events in the universe. ASIM can observe thunderstorm discharges difficult to observe from the ground. It has a mode where a detected event triggers observation and onboard storage of data.
A view of ASIM mounted on the outside of the space station. NASAView the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.