Jump to content

Recommended Posts

Posted
Ariane_6_Europe_s_next_big_rocket_in_a_n Video: 00:05:13

Ariane 6 is the newest rocket in a series that has, for five decades, been launching Europe towards the stars. Building on all the knowledge, expertise and technology developed over the years, Ariane 6 will be versatile, modular, and European.

Guaranteeing Europe’s access to space for the next years, Ariane 6 in two versions, with either two or four boosters attached depending on the ‘oomph’ the mission requires. Versatile, its upper stage can reignite multiple times during a single flight, placing any spacecraft into any orbit – including constellations – saving a final boost to return and burn up in Earth’s atmosphere. Modular, it will be continuously adapted to the needs of the future space sector.

Four organisations take care of the Ariane 6 programme: ESA at the head, ArianeGroup as the main contractor, CNES who designed and built the launchpad and ArianeSpace who sell the launches.

13 countries contribute, thousands of Europeans have worked on it, and every one of us will benefit from the Earth observation, science, technologies and services it will make possible.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Rocket City Regional – Alabama’s annual For Inspiration and Recognition of Science and Technology (FIRST) Robotics Regional Competition – is scheduled for Friday, March 14, through Saturday, March 15, at the Von Braun Center South Hall in Huntsville, Alabama. 
      FIRST Robotics is a global robotics competition for students in grades 9-12. Teams are challenged to raise funds, design a team brand, hone teamwork skills, and build and program industrial-sized robots to play a difficult field game against competitors. 
      Students from RAD Robotics Team 7111 – a FIRST Robotics team from Huntsville, Alabama, and sponsored by NASA’s Marshall Space Flight Center – make adjustments to their robot during the 2024 Rocket City Regional FIRST Robotics Competition in Huntsville. District and regional competitions – such as the Rocket City Regional – are held across the country during March and April, providing teams a chance to qualify for the 2025 FIRST Robotics Competition Championship events held in mid-April in Houston.
      Hundreds of high school students from 44 teams from 10 states and 2 countries will compete in a new robotics game called, “REEFSCAPE.” 
      This event is free and open to the public. Opening ceremonies begin at 8:30 a.m. CDT followed by qualification matches on March 14 and March 15. The Friday awards ceremony will begin at 5:45 p.m., while the Saturday awards ceremony will begin at 1:30 p.m.
      NASA and its Robotics Alliance Project provide grants for high school teams and support for FIRST Robotics competitions to address the critical national shortage of students pursuing STEM (Science, Technology, Engineering, and Mathematics) careers. The Rocket City Regional Competition is supported by NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Office of STEM Engagement. 
      News media interested in covering this event should respond no later than 4 p.m. on Thursday, March 13 by contacting Taylor Goodwin at 256-544-0034 or taylor.goodwin@nasa.gov. 
      Learn more about the Rocket City Regional event: 
      https://www.firstinspires.org/team-event-search/event?id=72593
      Find more information about Marshall’s support for education programs:
      https://www.nasa.gov/marshall/marshall-stem-engagement
      Taylor Goodwin 
      256-544-0034
      Marshall Space Flight Center, Huntsville, Alabama
      taylor.goodwin@nasa.gov
      Share
      Details
      Last Updated Mar 12, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      7 min read NASA Marshall Reflects on 65 Years of Ingenuity, Teamwork 
      Article 2 weeks ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
      Article 4 weeks ago 5 min read NASA Readies Moon Rocket for the Future with Manufacturing Innovation
      Article 4 weeks ago Keep Exploring Discover Related Topics
      NASA STEM Opportunities and Activities For Students
      Marshall Space Flight Center
      Marshall STEM Engagement
      About STEM Engagement at NASA
      View the full article
    • By European Space Agency
      Europe’s newest rocket, Ariane 6, took flight for the second time from Europe’s Spaceport in French Guiana at 13:24 local time on 6 March (16:24 GMT, 17:24 CET). This was the first commercial flight for Ariane 6, flight VA263, delivering the CSO-3 satellite to orbit. Arianespace was the operator and launch service provider for the French Procurement agency (DGA) and France’s space agency CNES on behalf of the French Air and Space Force’s Space Command (CDE).
      View the full article
    • By European Space Agency
      Europe’s newest rocket, Ariane 6, took flight for the second time from Europe’s Spaceport in French Guiana at 13:24 local time on 6 March (16:24 GMT, 17:24 CET). This was the first commercial flight for Ariane 6, flight VA263, delivering the CSO-3 satellite to orbit. Arianespace was the operator and launch service provider for the French Procurement agency (DGA) and France’s space agency CNES on behalf of the French Air and Space Force’s Space Command (CDE).
      View the full article
    • By NASA
      Skywatching Science Skywatching The Next Full Moon is the Worm… Skywatching Home What’s Up What to See Tonight Moon Guide Eclipses Meteor Showers More Tips & Guides Skywatching FAQ   22 Min Read The Next Full Moon is the Worm Moon
      Cockspur Island Lighthouse in Savannah, Georgia, on a full moon night in March 2019. Credits:
      NPS/Joel Cadoff The next full moon is called the Worm Moon. Also, there will be a total lunar eclipse this full moon. The Moon will be full early Friday morning, March 14, at 2:55 a.m. EDT, but will appear full for about three days around this time, from Wednesday evening into Saturday morning.
      The phases of the Moon for March 2025. As the Moon passes opposite the Sun it will move through the shadow of Earth creating a total eclipse of the Moon. The Moon will begin entering the partial shadow Thursday night at 11:57 p.m. EDT, but the gradual dimming of the Moon will not be noticeable until it starts to enter the full shadow Friday morning at 1:09 a.m. The round shadow of Earth will gradually shift across the face of the Moon (from lower left to upper right) until the Moon is fully shaded beginning at 2:26 a.m. The period of full shadow, or total eclipse, will last about 65 minutes, reaching the greatest eclipse at 2:59 a.m. and ending at 3:31 a.m. Even though it will be in full shadow, the Moon will still be visible. The glow of all of the sunrises and sunsets on Earth will give the Moon a reddish-brown hue, sometimes called a “Blood Moon” — although this name is also used for one of the full moons near the start of fall. From 3:31 a.m. until 4:48 a.m., the Moon will exit the full shadow of Earth, with the round shadow again shifting across the face of the Moon (from upper left to lower right). The Moon will leave the last of the partial shadow at 6 a.m. ending this eclipse.
      The Maine Farmers’ Almanac began publishing Native American names for full moons in the 1930s, and these names are now widely known and used. According to this almanac, the tribes of the northeastern U.S. called the full moon in March the Crow, Crust, Sap, Sugar, or Worm Moon. The more northern tribes of the northeastern United States knew this as the Crow Moon, with the cawing of crows signaling the end of winter. Other northern names were the Crust Moon, because the snow cover became crusted from thawing by day and freezing by night, or the Sap (or Sugar) Moon as this was the time for tapping maple trees. The more southern tribes called this the Worm Moon after the earthworm casts that appeared as the ground thawed. It makes sense that only the southern tribes called this the Worm Moon. When glaciers covered the northern part of North America they wiped out the native earthworms. After these glaciers melted about 12,000 years ago the more northern forests grew back without earthworms. Most of the earthworms in these areas are invasive species introduced from Europe and Asia.
      Continuing the tradition of naming moons after prominent phenomena tied to the time of year, a few years ago my friend Tom Van Wagner suggested naming this the Pothole Moon. It may be a case of confirmation bias, but whether in my car or on my bicycle I’ve noticed more potholes lately.
      As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full moon. Enjoy the total lunar eclipse (if you are in a part of the world that can see it), anticipate the coming of spring and watch out for potholes!
      Gordon johnston
      NASA Program Executive (Retired)
      Here are the other celestial events between now and the full moon after next with times and angles based on the location of NASA Headquarters in Washington:
      As winter in the Northern Hemisphere ends and spring begins, the daily periods of sunlight continue to lengthen, changing fastest around the vernal (spring) equinox on March 20. On Friday, March 14 (the day of the full moon), morning twilight will begin at 6:23 a.m. EDT, sunrise will be at 7:20 a.m., solar noon will be at 1:17 p.m. when the Sun will reach its maximum altitude of 48.9 degrees, sunset will be at 7:14 p.m., and evening twilight will end at 8:12 p.m. By Saturday, April 12 — the day of the full moon after next — morning twilight will begin at 5:36 a.m., sunrise will be at 6:36 a.m., solar noon will be at 1:09 p.m. when the Sun will reach its maximum altitude of 60.1 degrees, sunset will be at 7:43 p.m., and evening twilight will end at 8:43 p.m.
      During this lunar cycle, a backyard telescope should still provide interesting views of Jupiter and Mars high in the evening sky. Venus and Mercury will only be visible near the start at this cycle and will be too low to see easily unless you have access to a location with clear views toward the western horizon. With a telescope, you should be able to see Jupiter’s four bright moons, Ganymede, Callisto, Europa, and Io, noticeably shifting positions in the course of an evening. Jupiter was at its closest and brightest in early December. Mars was at its closest and brightest for the year just a month ago. The planet Uranus will be too dim to see without a telescope when the Moon is in the sky, but later in the lunar cycle, if you are in a very dark area with clear skies and no interference from moonlight, it will still be brighter than the faintest visible stars, making it barely visible. Uranus was at its closest and brightest in mid-November.
      Comets and Meteor Shower
      No meteor showers are predicted to peak during this lunar cycle, and no comets are expected to be visible without a telescope.
      Evening Sky Highlights
      On the evening of Thursday, March 13 — the night of the full moon — as twilight ends at 8:11 p.m. EDT, the rising Moon will be 14 degrees above the eastern horizon. The brightest planet in the sky will be Venus at 4 degrees above the west-southwestern horizon, appearing as a thin, 4% illuminated crescent through a telescope. Next in brightness will be Jupiter at 62 degrees above the west-southwestern horizon. Third in brightness will be Mars at 72 degrees above the southeastern horizon. Mercury, to the left of Venus, will also be 4 degrees above the western horizon. Uranus, on the edge of what is visible under extremely clear, moonless, and dark skies, will be 45 degrees above the western horizon. The bright star closest to overhead will be Capella at 75 degrees above the northwestern horizon. Capella is the 6th brightest star in our night sky, and the brightest star in the constellation Auriga (shaped like a charioteer). Although we see Capella as a single star it is actually four stars — two pairs of stars orbiting each other. Capella is about 43 light-years from Earth.
      Also high in the sky will be the constellation Orion, easily identifiable because of the three stars that form Orion’s Belt. This time of year, we see many bright stars at evening twilight, with bright stars scattered from the south-southeast toward the northwest. We see more stars in this direction because we are looking toward the Local Arm of our home galaxy (also called the Orion Arm, Orion-Cygnus Arm, or Orion Bridge). This arm is about 3,500 light years across and 10,000 light years long. Some of the bright stars we see from this arm are the three stars of Orion’s Belt, along with Rigel (860 light-years from Earth), Betelgeuse (548 light-years), Polaris (about 400 light-years), and Deneb (about 2,600 light-years).
      As this lunar cycle progresses, the background of stars will rotate by about a degree westward each evening around the pole star Polaris. March 16 will be the last evening Venus will be above the horizon, and March 17 will be the last evening Mercury will be above the horizon as twilight ends. On March 30, Mars will pass by the bright star Pollux for the third time in 6 months, having passed by in mid-October 2024, changed direction (called apparent retrograde motion) and passed again in mid-January, then changed directions again for this March 30 pass. The waxing moon will appear near the Pleiades star cluster on April 1, Jupiter on April 2, Mars and Pollux on April 5, and Regulus on April 7 and 8.
      By the evening of Saturday, April 12 — the evening of the night of the full moon after next — as twilight ends at 8:43 p.m. EDT, the rising Moon will be 10 degrees above the east-southeastern horizon with the bright star Spica about a half degree to the upper left. The brightest planet in the sky will be Jupiter at 38 degrees above the western horizon. Next in brightness will be Mars at 70 degrees above the southwestern horizon. Uranus, on the edge of what is visible under extremely clear, moonless dark skies, will be 18 degrees above the western horizon. The bright star closest to overhead will be Pollux at 71 degrees above the west-southwestern horizon. Pollux is the 17th brightest star in our night sky and the brighter of the twin stars in the constellation Gemini the twins. It is an orange-tinted star about 34 light-years from Earth. Pollux is not quite twice the mass of our Sun, but is about 9 times the diameter and 33 times the brightness.
      Morning Sky Highlights
      On the morning of Friday, March 14 — the morning of the full moon — as twilight begins at 6:23 a.m. EDT, the setting full moon will be 12 degrees above the western horizon. No visible planets will appear in the sky. The bright star closest to overhead will be Vega at 68 degrees above the eastern horizon. Vega is the 5th brightest star in our night sky and the brightest star in the constellation Lyra (the lyre). Vega is one of the three bright stars of the “Summer Triangle” along with Deneb and Altair. It is about 25 light-years from Earth, has twice the mass of our Sun, and shines 40 times brighter than our Sun.
      As this lunar cycle progresses, the background of stars will rotate westward by about a degree each morning around the pole star Polaris. The waning moon will appear near Spica on March 16 and 17, and Antares on March 20. Bright Venus — now the morning star — will begin to emerge from the glow of dawn around March 21 and will be above the horizon as twilight begins after March 29. Mercury and Saturn will begin emerging from the glow of dawn in early April, rising after morning twilight begins. Initially Saturn will appear brighter than Mercury, but Mercury will brighten each morning as it becomes a fuller crescent, showing more illuminated area to Earth. After about April 8, Mercury will appear brighter than Saturn.
      By the morning of Sunday, April 13 — the morning of the night of the full moon after next — as twilight begins at 5:34 a.m. EDT, the setting full moon will be 10 degrees above the west-southwestern horizon with the bright star Spica 4 degrees to the right. The only planet in the sky as twilight begins will be bright Venus as the morning star at 5 degrees above the eastern horizon. However, both Mercury and the fainter Saturn should be visible below Venus after they rise 4 and 7 minutes later (Saturn at 5:37 a.m. and Mercury at 5:40 a.m.). The bright star closest to overhead still will be Vega at 81 degrees above the eastern horizon.
      Detailed Daily Guide
      Here for your reference is a day-by-day listing of celestial events between now and the full moon on April 12, 2025. The times and angles are based on the location of NASA Headquarters in Washington, and some of these details may differ for where you are (I use parentheses to indicate times specific to the D.C. area). If your latitude is significantly different than 39 degrees north (and especially for my Southern Hemisphere readers), I recommend using an astronomy app that is set up for your location or a star-watching guide from a local observatory, news outlet, or astronomy club.
      March 8 Just after midnight on Saturday morning, March 8, the planet Mercury will reach its greatest angular separation from the Sun as seen from Earth for this apparition (called greatest elongation).
      Saturday evening, March 8, Mercury will appear at its highest (6 degrees) above the western horizon as evening twilight ends (at 7:06 p.m. EST). Mercury will set 34 minutes later (at 7:40 p.m.). This will also be the evening Mercury will have dimmed to the brightness of Mars, after which Mars will be the third brightest visible planet again.
      March 8 – 9 On Saturday evening into Sunday morning, March 8 to 9, Mars will appear near the waxing gibbous moon with the bright star Pollux (the brighter of the twin stars in the constellation Gemini) nearby. As evening twilight ends at 7:06 p.m. EST, Mars will be 1.5 degrees to the lower right of the Moon and Pollux will be 6 degrees to the lower left. As the Moon reaches its highest for the night more than an hour later at 8:22 p.m., Mars will be 1.5 degrees to the lower right of the Moon and Pollux will be 5.5 degrees to the upper left. By the time Mars sets on the northwestern horizon (at 4:53 a.m.) it will be 4 degrees to the lower left of the Moon and Pollux will be 3 degrees above the Moon.
      March 9 Don’t forget to reset your clocks (if they don’t automatically set themselves) as we “spring forward” to Daylight Saving Time! For much of the U.S., 2 to 3 a.m. on March 9, 2025, might be a good hour for magical or fictional events (as it doesn’t actually exist).
      March 11 – 12 Tuesday evening into Wednesday morning, March 11 to 12, the bright star Regulus will appear near the nearly full moon. As evening twilight ends at 8:09 p.m. EDT, Regulus will be 4 degrees to the lower right of the Moon. When the Moon reaches its highest for the night at 11:52 p.m., Regulus will be 3 degrees to the lower right. By the time morning twilight begins at 6:26 a.m., Regulus will be about one degree below the Moon.
      Wednesday morning, March 12, Saturn will be passing on the far side of the Sun as seen from Earth, called conjunction. Because Saturn orbits outside of the orbit of Earth it will be shifting from the evening sky to the morning sky. Saturn will begin emerging from the glow of dawn on the eastern horizon in early April (depending upon viewing conditions).
      Wednesday evening, March 12, will be when Venus and Mercury will appear closest to each other low on the western horizon, 5.5 degrees apart. They will be about 5 degrees above the horizon as evening twilight ends at 8:10 p.m. EDT, and Mercury will set first 27 minutes later at 8:37 p.m.
      March 14 As mentioned above, the full moon will be early Friday morning, March 14, at 2:55 a.m. EDT. There will be a total eclipse of the Moon. As the Moon passes opposite the Sun it will move through the shadow of Earth. The Moon will begin entering the partial shadow Thursday night at 11:57 p.m., but the gradual dimming of the Moon will not be noticeable until it starts to enter the full shadow Friday morning at 1:09 a.m. The round shadow of Earth will gradually shift across the face of the Moon (from lower left to upper right) until the Moon is fully shaded beginning at 2:26 a.m. The period of full shadow or total eclipse will last about 65 minutes, reaching the greatest eclipse at 2:59 a.m. and ending at 3:31 a.m. Even though it will be in full shadow, the Moon will still be visible. The glow of all of the sunrises and sunsets on Earth will give the Moon a reddish-brown hue, sometimes called a “Blood Moon” — although this name is also used for one of the full moons near the start of fall. From 3:31 a.m. until 4:48 a.m. the Moon will exit the full shadow of Earth, with the round shadow of Earth again shifting across the face of the Moon (from upper left to lower right). The Moon will leave the last of the partial shadow at 6 a.m., ending this eclipse. This full moon will be on Thursday evening from Pacific Daylight Time and Mountain Standard Time westward to the International Date Line in the mid Pacific. The Moon will appear full for about three days around this time, from Wednesday evening into Saturday morning.
      March 16 Sunday morning, March 16, the bright star Spica will appear near the waning gibbous moon. As the Moon reaches its highest at 2:34 a.m. EDT, Spica will be 6.5 degrees to the lower left. As morning twilight begins at 6:20 a.m. Spica will be 5 degrees to the upper left.
      During the day on Sunday, March 16, for parts of Eastern Africa, the southern tip of the Arabian Peninsula, the Indian Ocean, and the southern tip of Western Australia, the Moon will pass in front of Spica.
      Sunday evening, March 16, will be the last evening that Venus will be above the west-northwestern horizon as evening twilight ends at 8:14 p.m. EDT, with Venus setting 1 minute later.
      March 16 – 17 Sunday night into Monday morning, March 16 to 17, the waning gibbous moon will have shifted to the other side of the bright star Spica. As the Moon rises on the east-southeastern horizon at 9:49 p.m. EDT, Spica will be 4 degrees above the Moon. By the time the Moon reaches its highest at 3:15 a.m., Spica will be 6.5 degrees to the upper right. As morning twilight begins at 6:18 a.m., Spica will be 7.5 degrees to the right of the Moon.
      Monday midday, March 17, at 12:27 p.m. EDT, the Moon will be at apogee, its farthest from Earth for this orbit.
      Monday evening, March 17, will be the last evening that Mercury will be above the western horizon as evening twilight ends at 8:15 p.m. EDT, with Mercury setting 3 minutes later.
      March 19 Wednesday evening, March 19, Neptune will be passing on the far side of the Sun as seen from Earth, called conjunction. Because it orbits outside of the orbit of Earth, Neptune will be shifting from the evening sky to the morning sky. Neptune is faint enough that it is only visible with a telescope.
      March 20 Thursday morning, March 20, the bright star Antares will appear near the waning gibbous moon. As Antares rises on the southeastern horizon at 1:17 a.m. EDT, it will be 5 degrees to the lower left of the Moon. By the time the Moon reaches its highest for the night at 5:31 a.m., Antares will be 3.5 degrees to the left of the Moon. Morning twilight will begin 42 minutes later at 6:13 a.m. For parts of Australia and New Zealand the Moon will pass in front of Antares.
      Thursday morning at 5:01 a.m. EDT will be the vernal equinox, the astronomical end of winter and start of spring.
      March 21 Starting around Friday morning, March 21, Venus as the morning star will begin to emerge from the glow of dawn, rising on the east-northeastern horizon more than 30 minutes before sunrise. Interestingly, this is just before inferior conjunction, when Venus passes “between” Earth and the Sun (passing through the same ecliptic longitude as the Sun as seen from Earth).
      March 22 Saturday morning, March 22, the waning moon will appear half-full as it reaches its last quarter at 7:29 a.m. EDT.
      Saturday night, Venus will be passing through the same ecliptic longitude as the Sun as seen from Earth, called inferior conjunction. Planets that orbit inside of the orbit of Earth can have two types of conjunctions with the Sun, inferior (when passing between Earth and Sun) and superior (when passing on the far side of the Sun as seen from Earth). Venus will be shifting from the evening sky to the morning sky but will be passing far enough away from the Sun that it may have already begun to be visible in the glow of dawn on the east-northeastern horizon (depending upon viewing conditions).
      March 24 Monday afternoon, March 24, Mercury will be passing between Earth and Sun as seen from Earth, called inferior conjunction. It also will be shifting from the evening sky to the morning sky and will begin emerging from the glow of dawn on the eastern horizon in early April (depending upon viewing conditions).
      March 29 Saturday morning, March 29, will be the first morning that Venus as the morning star will be above the horizon as twilight begins at 5:59 a.m. EDT.
      Saturday morning, March 29, at 6:58 a.m. EDT, will be the new moon, when the Moon passes between Earth and the Sun and is usually not visible from Earth. However, for parts of northwestern Africa, northwestern Eurasia, and northeastern North America, part of the silhouette of the Moon will be visible as it passes in front of the Sun in a partial solar eclipse. The viewing from the Washington area will not be very good. As the Sun rises on the eastern horizon at 6:57 a.m., the Moon will be blocking a small sliver of the left side of the Sun, with the eclipse ending 5 minutes later at 7:02 a.m.
      March 30 Early Sunday morning, March 30, at 1:19 a.m. EDT, the Moon will be at perigee, its closest to Earth for this orbit.
      For the third time since mid-October 2024, Mars will be passing by the bright star Pollux, the brighter of the twin stars in the constellation Gemini (the twins). Planets that orbit farther from the Sun than Earth’s orbit usually appear to shift westward each night, like the stars, but more slowly, so that they shift eastward relative to the stars. This is because the planets all move in the same direction around the Sun. But around the time when an outer planet is closest to Earth it appears to move the other direction, shifting westward relative to the stars, called apparent retrograde motion. This tendency to “wander” relative to the stars is where the word “planet” comes from (based on the Greek word for “wanderer”). In mid-October 2024 Mars passed by Pollux for the first time as it moved eastward relative to the stars. Beginning Dec. 6, 2024, Mars started its retrograde motion. On Jan. 15, 2025, Mars was at its closest and brightest for the year. On January 23 Mars passed by Pollux for the second time, just 2.5 degrees apart, this time shifting westward relative to the stars. Mars ended its retrograde motion on February 23. It is now shifting eastward again relative to the stars and will pass Pollux a third time on March 30, this time 4 degrees apart. Mars and Pollux will be nearly overhead as evening twilight ends at 8:29 p.m. EDT. Mars will set first on the west-northwestern horizon the morning of March 31 at 3:43 a.m.
      This also is the first morning that Mercury will be above the eastern horizon 30 minutes before sunrise. Mercury will be relatively dim, as it will only present a narrow crescent toward Earth. It will brighten significantly each morning, but it’s difficult to predict when it will be bright enough to see in the glow of dawn.
      April 1 Tuesday morning, April 1, will be the first morning that Saturn will be above the eastern horizon 30 minutes before sunrise, a rough approximation of when it might start being visible in the glow of dawn.
      Tuesday evening, the Pleiades star cluster will appear 1.5 degrees below the waxing crescent moon. The Moon will be 36 degrees above the western horizon as evening twilight ends at 8:31 p.m. EDT, and the Pleiades will set first on the west-northwestern horizon 3 hours later at about 11:40 p.m.
      April 2 Wednesday evening, April 2, Jupiter will appear 5.5 degrees to the lower left of the waxing crescent moon. The Moon will be 49 degrees above the western horizon as evening twilight ends at 8:32 p.m. EDT. Jupiter will set first on the west-northwestern horizon 4 hours later Thursday morning at 12:43 a.m.
      April 4 Friday night, April 4, the Moon will appear half-full as it reaches its first quarter at 10:15 p.m. EDT.
      April 5 – 6 Saturday night into Sunday morning, April 5 to 6, the waxing gibbous moon, Mars, and the bright star Pollux will appear to form a triangle. As evening twilight ends at 8:35 p.m. EDT, Mars will be 3 degrees to the lower right and Pollux 5 degrees to the upper right. As the night progresses, Mars and Pollux will appear to rotate clockwise and away from the Moon. As Mars sets first on the west-northwestern horizon 7 hours later at 3:26 a.m. it will be 6 degrees to the lower right, with Pollux 8.5 degrees to the right of the Moon.
      April 7 – 8 Monday night into Tuesday morning, April 7 to 8, the bright star Regulus will appear near the waxing gibbous moon. As evening twilight ends at 8:37 p.m. EDT, Regulus will be 7 degrees below the Moon. As the Moon reaches its highest in the sky at 9:51 p.m., Regulus will be 6.5 degrees to the lower left. By the time Regulus and the Moon set together on the west-northwestern horizon at 4:52 a.m., Regulus will be 3.5 degrees to the left of the Moon.
      Tuesday morning, April 8, will be when Mercury will become as bright as Saturn in the glow of dawn (with both Mercury and Saturn rising after morning twilight begins). After this, Mercury will continue brightening each morning as more of its sunlit crescent faces Earth.
      April 8 – 9 Tuesday night into Wednesday morning, April 8 to 9, the waxing gibbous moon will have shifted to the other side of the bright star Regulus. As evening twilight ends at 8:38 p.m. EDT, Regulus will be 6 degrees to the upper right of the Moon. As the Moon reaches its highest in the sky at 10:34 p.m., Regulus will be 7 degrees to the right. The pair will continue to separate as the night progresses.
      April 10 Thursday morning, April 10, the planets Mercury and Saturn will appear nearest each other, 2 degrees apart, in the glow of dawn. Mercury — the brighter of the two — will be on the left and Saturn will be on the right. Saturn will rise last on the eastern horizon at 5:48 a.m. EDT, 9 minutes after morning twilight begins. You will only have about 20 minutes to view the pair, as by 30 minutes before sunrise (i.e., 6:09 a.m.) the sky will become too bright to see them.
      April 12 Saturday, April 12, 2025, is the International Day of Human Space Flight as declared by the United Nations to mark the date of the first human space flight.
      The full moon after next will be April 12 at 8:22 p.m. EDT. This will be on April 13 in Coordinated Universal Time (UTC) and from the Azores, Iceland, Liberia, and Senegal times zones eastward across Africa, Eurasia, and Australia to the International Date Line in the mid-Pacific. Most commercial calendars are based on UTC and will show this full moon on April 13. The Moon will appear full for about three days around this time, from Friday evening into Monday morning, making this a full moon weekend.
      Saturday evening into Sunday morning, the bright star Spica will appear close to the full moon. As evening twilight ends at 8:43 p.m., Spica will be less than a degree to the upper left of the Moon. Spica will appear to rotate clockwise and shift away from the Moon as the night progresses.
      Keep Exploring Discover More Topics From NASA
      Skywatching



      Moons



      Solar System Exploration



      Planets


      View the full article
    • By NASA
      NASA’s Jason Hopper is shown at the E Test Complex at NASA’s Stennis Space Center.NASA/Danny Nowlin Jason Hopper’s journey to NASA started with assessing the risk of stepping into the unknown.
      One day, while taking a break from his hobby of rock climbing at Mississippi State University, a fellow student noticed Hopper reading a rocket propulsion textbook with a photo of a space shuttle launch on the cover.
      Rocket propulsion – the technology that propels vehicles into space, usually through liquid rocket engines or solid rocket motors – is a highly complex field. Engineers rigorously test the propulsion systems and components to understand their capabilities and limitations, ensuring rockets can safely reach space.
      “A guy just walked up and randomly said, ‘Hey, my dad works testing rocket engines,’” Hopper recalled.
      Hopper, an aerospace engineering student at the time, did not know about NASA’s Stennis Space Center near Bay St. Louis, Mississippi. He soon would learn more.
      The fellow student provided him with contact information, and the rest is history.
      A Meridian, Mississippi, native, Hopper graduated from Mississippi State in 2007 and made his way to America’s largest rocket propulsion test site in south Mississippi.
      On the other side of Hopper’s risk of stepping into the unknown came the reward of realizing how far he had come from reading about rocket propulsion work to contributing to it.
      The career highlight happened when Hopper watched a space shuttle launch, powered in part by an engine he had fired up as a test conductor working at NASA Stennis.  
      “You cannot really put it into words because it permeates all through you, knowing that you are a part of something that big while at the same time, you are just a little piece of it,” he said. 
      Hopper transitioned from his contractor position to a civil servant role as test conductor when he joined NASA in 2011.
      His work as a test conductor throughout all the NASA Stennis test areas and as test director at the E Test Complex has benefited NASA and industry, while giving him a good perspective on the value of the center’s work.
      Among the projects he has played a large role in include the J-2X engine test program, build up for NASA’s SLS (Space Launch System) core stage hot fire ahead of the successful Artemis I launch and multiple projects throughout the E Test Complex.
      “We offer operational excellence that I would argue you cannot get anywhere else,” Hopper said. “NASA Stennis is a smaller, family-oriented center renowned for excellence in rocket propulsion testing. It is a small place, where we do amazing things.”
      Propulsion test customers at NASA Stennis include government and commercial projects. The NASA center is engaged in two projects to support the agency’s SLS rocket – testing of RS-25 engines to help power SLS launches and of NASA’s new exploration upper stage to fly on future missions to the Moon.
      Current commercial companies conducting work at NASA Stennis include Blue Origin; Boeing; Evolution Space; Launcher, a Vast company; Relativity Space; and Rolls-Royce. Three companies – Relativity Space, Rocket Lab, and Evolution Space – are establishing production and/or test operations onsite.
      After leaving south Mississippi for a four-year stint at NASA’s Marshall Spaceflight Center in Huntsville, Alabama, Hopper returned to NASA Stennis as risk manager of NASA’s Rocket Propulsion Test Program Office.
      In his day-to-day work, Hopper assesses risk around two questions – what is the risk and what do I really need to be focusing on?
      Making decisions through this filter helps the Poplarville, Mississippi, resident make the best use of the agency’s rocket propulsion test assets, activities, and resources.
      “With a risk perspective, if things are high risk, we need to address these items and focus our attention on them,” Hopper said. “If we lose a national test capability, that impacts more than just NASA; it impacts the nation because NASA is a significant enabler of commercial spaceflight.”
      Hopper helps oversee the maintenance and sustainment of propulsion test capabilities across four sites – NASA Stennis; NASA Marshall; NASA’s Neil Armstrong Test Facility in Sandusky, Ohio; and NASA’s White Sands Test Facility in Las Cruces, New Mexico.
      By establishing and maintaining world-class test facilities, the agency’s Rocket Propulsion Test Program Office ensures that NASA and its partners can conduct safe, efficient, and cost-effective rocket propulsion tests to support the advancement of space exploration and technology development. 
      Hopper looks to the future with optimism.
      “We have an opportunity to redefine kind of what we as NASA and NASA Stennis do and how we do it,” he said. “Before, we were trying to help commercial companies figure things out. We were trying to get them up and going, but now we are in more of a support role in a lot of ways and so if you look at it, and approach it the right way, it can be very exciting.”
      View the full article
  • Check out these Videos

×
×
  • Create New...