Jump to content

MRO HiRISE image reveals remnants of an ancient city on Mars destroyed by thermonuclear attack


Recommended Posts

Years ago, physicist Dr. John Brandenburg stated that there is evidence of two nuclear explosions on Mars. These explosions could have been caused by thermonuclear bombs. 

ancient%20city%20Mars%20nuclear%20explosion%20(1).jpg
Remnants of an ancient city on Mars destroyed by thermonuclear attack.

Evidence supporting this theory includes the presence of nuclear isotopes in the Martian atmosphere and the detection of a thin layer of substances such as uranium, thorium, and radioactive potassium on the surface of Mars. 

The absence of craters at the sites indicates that the bombs were likely detonated above ground in an air blast, which worsens the global fallout but dampens the immediate ground impact. Conversely, if detonated on the ground, the local devastation is immense but the global impact is minimized. Regardless, these explosions were powerful enough to cause a global catastrophe and significantly alter Mars' climate. According to Brandenburg, the nuclear attack apparently wiped out two races: the Cydonians and Utopians. 

nuclear%20explosions%20mars.png

The MRO HiRISE image ESP_019103_1460 shows the "Atlantic Chaos," and a closer examination reveals a city that was almost destroyed by the thermonuclear explosions. Amid the ruins of destroyed buildings and towering structures, a largely intact dome-shaped structure is visible (See image below.) 

ancient%20city%20Mars%20nuclear%20explosion%20(2).jpg

The remnants of this city suggest that Mars was once inhabited by intelligent species like the Cydonians and Utopians, who lived there under conditions similar to those on Earth. This also serves as evidence that far more advanced civilizations may have existed for millions of years and possessed the capability to annihilate all life on a planet using thermonuclear bombs, among other means. 

See also:


Gigapan images (zoom) of the destroyed city on Mars: 


View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      A fascinating feature takes centre stage in this new image from ESA’s Mars Express: a dark, uneven scar slicing through marbled ground at the foot of a giant volcano.
      View the full article
    • By NASA
      The first CHAPEA mission crew members who have been living and working inside NASA’s first simulated yearlong Mars habitat mission are set to exit their ground-based home on Saturday, July 6. The four volunteers who have been living and working inside NASA’s first simulated yearlong Mars habitat mission are set to exit their ground-based home on Saturday, July 6. NASA will provide live coverage of the crew’s exit from the habitat at NASA’s Johnson Space Center in Houston at 5 p.m. EDT.
      NASA will stream the activity, which will include a short welcome ceremony, on NASA+, NASA Television, the NASA app, the agency’s website, and NASA Johnson’s X and Facebook accounts. Learn how to stream NASA TV through a variety of platforms, including social media.
      The first Crew Health and Performance Exploration Analog (CHAPEA) mission began in the 3D printed habitat on June 25, 2023, with crew members Kelly Haston, Anca Selariu, Ross Brockwell, and Nathan Jones. For more than a year, the crew simulated Mars mission operations, including “Marswalks,” grew and harvested several vegetables to supplement their shelf-stable food, maintained their equipment and habitat, and operated under additional stressors a Mars crew will experience, including communication delays with Earth, resource limitations, and isolation.
      In addition to the CHAPEA crew, participants include:
      Steve Koerner, deputy director, NASA Johnson Kjell Lindgren, NASA astronaut and deputy director, Flight Operations Grace Douglas, principal investigator, CHAPEA  Judy Hayes, chief science officer, Human Health and Performance Directorate Julie Kramer White, director of engineering  Due to facility limitations and crew quarantine requirements, NASA is unable to accommodate requests to attend the event in person. Media interested in speaking with the mission’s crew members in the days following the conclusion of their mission must send a request by 4 p.m. July 6, to the Johnson newsroom at 281-483-5111 or jsccommu@nasa.gov.
      NASA is leading a return to the Moon for long-term science and exploration through the Artemis campaign. Lessons learned on and around the Moon will prepare NASA for the next giant leap – sending the first astronauts to Mars.
      Learn more about CHAPEA:
      https://www.nasa.gov/humans-in-space/chapea/
      -end-
      Rachel Kraft
      Headquarters, Washington
      202-358-1600
      rachel.h.kraft@nasa.gov
      Laura Sorto
      Johnson Space Center, Houston
      281-483-5111
      laura.g.sorto@nasa.gov
      View the full article
    • By NASA
      Four dedicated explorers—Jason Lee, Stephanie Navarro, Shareef Al Romaithi, and Piyumi Wijesekara—just returned from a 45-day simulated journey to Mars, testing the boundaries of human endurance and teamwork within NASA’s HERA (Human Exploration Research Analog) habitat at Johnson Space Center in Houston. Their groundbreaking work on HERA’s Campaign 7 Mission 2 contributes to NASA’s efforts to study how future astronauts may react to isolation and confinement during deep-space journeys. 
      NASA’s HERA (Human Exploration Research Analog) Campaign 7 Mission 2 crew members outside the analog environment on June 24, 2024. From left: Piyumi Wijesekara, Shareef Al Romaithi, Jason Lee, and Stephanie Navarro. Credit: NASA/James Blair Credit: NASA/James Blair Throughout their mission, the crew conducted operational tasks and participated in 18 human health studies. These studies focused on behavioral health, team dynamics, and human-system interfaces, with seven being collaborative efforts with the Mohammed Bin Rashid Space Centre (MBRSC) of the United Arab Emirates (UAE) and the European Space Agency. These experiments assessed the crew’s physiological, behavioral, and psychological responses in conditions designed to be similar to a mission to Mars. 
      The HERA Campaign 7 Mission 2 crew experience a simulated landing on their return home. Credit: NASA/James Blair As their mission concluded, the HERA crew watched real footage from the Artemis I mission to simulate their landing. HERA operations lead Ted Babic rang the bell outside the habitat nine times to celebrate the crew’s egress—seven for the campaign and two for the mission—saying, “All in a safe passage to Mars and a safe return to Earth. May this vessel be a safe home to future HERA crews.” Babic then presented the crew with their mission patch, which they placed on the door of the HERA habitat. 
      The HERA Campaign 7 Mission 2 crew members place their mission patch on the habitat’s airlock door after egress. Credit: NASA/James Blair The crew expressed their gratitude to everyone involved in the mission, including NASA and MBRSC, the HERA mission control center, NASA’s Human Research Program (HRP) team, Analog Mission Control, medical teams, and their family and friends. Wijesekara shared, “This was one of the best experiences I’ve had in my life. I’d like to thank my crewmates for making this experience memorable and enjoyable.” 
      The HERA Campaign 7 Mission 2 crew members at NASA’s Johnson Space Center in Houston after their 45-day simulated mission to Mars. From left: Piyumi Wijesekara, Shareef Al Romaithi, Jason Lee, and Stephanie Navarro.Credit: NASA/James Blair Connecting With Students  

      On June 21, three days before crew egress, about 200 people gathered at Space Center Houston’s theater for a live Q&A session where students had the opportunity to share their questions with crew members Al Romaithi and Wijesekara. They discussed team dynamics, adapting to unexpected circumstances, and coping with isolation.  

      When asked about what prompted her to apply for the mission, Wijesekara emphasized the importance of helping NASA collect data that could help future long-duration space flights, saying, “This will be very useful when we get to the Moon with Artemis missions and even beyond that when we go to Mars.” 
      The HERA Campaign 7 Mission 2 crew members Piyumi Wijesekara and Shareef Al Romaithi join a groundlink Q&A with students at Space Center Houston on June 21, 2024. Credit: Space Center Houston/Jennifer Foulds  Inside HERA, mealtimes were bonding moments where the crew shared stories, laughed, and supported each other. When a student asked about building stronger teams, Wijesekara advised, “Spend time with your crewmates, get to know them deeply, and be a good listener.” 

      Al Romaithi, who hails from the UAE, shared that his academic background in aerospace engineering and aviation helped him stand out in the application process. In addition, this HERA campaign is focused on cultural diversity, which opened the opportunity for him to apply through a partnership between HERA and MBRSC. 

      Discussing the mental effects of isolation, Al Romaithi highlighted the comfort provided by personal items, books, and board games. Wijesekara noted that the white noise of instruments running became their constant companion that her senses adjusted to over time. 

      Wijesekara told the audience her favorite experience was performing spacewalks and “flying drones on Mars,” via virtual reality, which allowed them to observe Martian landscapes and even lava caves. Through the habitat’s window screens, they could see simulated views of space and Martian landscapes.  

      The crew addressed the challenges they faced inside the analog environment, such as communication delays, which taught them teamwork, patience, and precise planning. They utilized a 3D printer aboard HERA to address equipment issues. A curious student asked what happens to the crew and the mission in case of an outside emergency, like a hurricane. Both crew members explained that HERA provided them with step-by-step emergency instructions. 

      Medical evaluations and nutrition-specific meal plans were crucial for the mission, Al Romaithi and Wijesekara noted, with daily monitoring of the crew’s physical and mental health. The crew also grew lettuce hydroponically and had four pet triops shrimp named Buzz, Alvin, Simon, and Theodore. 

      When a student asked what food he missed most, Al Romaithi replied, “Home-cooked meals.”  

      Wijesekara shared the first thing she plans to do post-mission is see her family and visit a list of restaurants with her crewmates. She also looks forward to running on the beach. 

      Reflecting on their experience, Al Romaithi noted, “We’ve become more disciplined and efficient in our daily activities.”  

      What was the most valuable lesson learned? “The importance of teamwork and communication,” he said.  

      Both crewmembers also gave students in the audience some advice. “Never hesitate or be shy to ask for help,” Al Romaithi said. “Always push for your biggest dreams, don’t let self-doubt slow you down, and believe in yourself.” 

      “And keep studying!” added Wijesekara. 
      Students ask HERA crew members questions at the Space Center Houston theater. Credit: Space Center Houston/Jennifer Foulds Credit: Space Center Houston/Jennifer Foulds Students ask HERA crew members questions at the Space Center Houston theater. Credit: Space Center Houston/Jennifer Foulds View the full article
    • By USH
      In this video, we delve into an extraordinary UFO sighting over Puerto Rico that left witnesses in awe. On May 15, 2005, an immense triangular object, comparable to the size of two ballparks, was photographed in Carolina, Puerto Rico. Witnesses reported the UFO caused their vehicle's engine and lights to fail as it silently passed overhead. 

      Editor's note: The  UFO resembles the infamous TR-3B  antigravity craft but given the size of the UFO compared to the size of TR-3B it is possible that the witnesses saw a real UFO. 
      (The TR-3B: This craft uses highly pressured mercury accelerated by nuclear energy to produce a plasma that creates a field of anti-gravity around the ship.  Conventional thrusters located at the tips of the craft allow it to perform all manner of rapid high speed maneuvers along all three axes. Interestingly, the plasma generated also reduces radar signature significantly. So it'll be almost invisible on radar and remain undetected.)
      We analyze the photographic evidence, recount the firsthand experiences, and explore the potential electromagnetic effects of this mysterious craft.
        View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      View of the Nova-C landing area near Malapert A in the South Pole region of the Moon. North is to the right. Taken by LROC (Lunar Reconnaissance Orbiter Camera) NAC (Narrow Angle Camera).NASA/GSFC/Arizona State University NASA has released two white papers associated with the agency’s Moon to Mars architecture efforts. The papers, one on lunar mobility drivers and needs, and one on lunar surface cargo, detail NASA’s latest thinking on specific areas of its lunar exploration strategy.
      While NASA has established a yearly cadence of releasing new documents associated with its Moon to Mars architecture, the agency occasionally releases mid-cycle findings to share essential information in areas of interest for its stakeholders.
      “Lunar Mobility Drivers and Needs” discusses the need to move cargo and assets on the lunar surface, from landing sites to points of use, and some of the factors that will significantly impact mobility systems.
      “Lunar Surface Cargo” analyses some of the current projected needs — and identifies current capability gaps — for the transportation of cargo to the lunar surface.
      The Moon to Mars architecture approach incorporates feedback from U.S. industry, academia, international partners, and the NASA workforce. The agency typically releases a series of technical documents at the end of its annual analysis cycle, including an update of the Architecture Definition Document and white papers that elaborate on frequently raised topics.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      You can find all of NASA’s Moon to Mars architecture documents at:
      https://www.nasa.gov/moontomarsarchitecture
      Share
      Details
      Last Updated Jun 28, 2024 Related Terms
      Humans in Space Explore More
      2 min read Unity in Orbit: Astronauts Soar with Pride Aboard Station 
      Article 3 days ago 5 min read Six Adapters for Crewed Artemis Flights Tested, Built at NASA Marshall
      Article 3 days ago 5 min read Lakita Lowe: Leading Space Commercialization Innovations and Fostering STEM Engagement 
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...