Jump to content

NASA’s Planetary Radar Tracks Two Large Asteroid Close Approaches


Recommended Posts

  • Publishers
Posted
A series of images showing different rotational views of asteroid 4179 Toutatis taken from radar data, against a black background. The asteroid appears irregular in shape.
The Goldstone Solar System Radar, part of NASA’s Deep Space Network, made these observations of the recently discovered 500-foot-wide (150-meter-wide) asteroid 2024 MK, which made its closest approach — within about 184,000 miles (295,000 kilometers) of Earth — on June 29.
NASA/JPL-Caltech

The Deep Space Network’s Goldstone planetary radar had a busy few days observing asteroids 2024 MK and 2011 UL21 as they safely passed Earth.

Scientists at NASA’s Jet Propulsion Laboratory in Southern California recently tracked two asteroids as they flew by our planet. One turned out to have a little moon orbiting it, while the other had been discovered only 13 days before its closest approach to Earth. There was no risk of either near-Earth object impacting our planet, but the radar observations taken during these two close approaches will provide valuable practice for planetary defense, as well as information about their sizes, orbits, rotation, surface details, and clues as to their composition and formation.

Passing Earth on June 27 at a distance of 4.1 million miles (6.6 million kilometers), or about 17 times the distance between the Moon and Earth, the asteroid 2011 UL21 was discovered in 2011 by the NASA-funded Catalina Sky Survey, in Tucson, Arizona. But this is the first time it has come close enough to Earth to be imaged by radar. While the nearly mile-wide (1.5-kilometer-wide) object is classified as being potentially hazardous, calculations of its future orbits show that it won’t pose a threat to our planet for the foreseeable future.

2-pia26383-main-2024mk-16.jpg?w=2048
Because close approaches by asteroids the size of 2024 MK are relatively rare, JPL’s planetary radar team gathered as much information about the near-Earth object as possible. This mosaic shows the spinning asteroid in one-minute increments about 16 hours after its closest approach with Earth.
NASA/JPL-Caltech

Using the Deep Space Network’s 230-foot-wide (70-meter) Goldstone Solar System Radar, called Deep Space Station 14 (DSS-14), near Barstow, California, JPL scientists transmitted radio waves to the asteroid and received the reflected signals by the same antenna. In addition to determining the asteroid is roughly spherical, they discovered that it’s a binary system: A smaller asteroid, or moonlet, orbits it from a distance of about 1.9 miles (3 kilometers).

“It is thought that about two-thirds of asteroids of this size are binary systems, and their discovery is particularly important because we can use measurements of their relative positions to estimate their mutual orbits, masses, and densities, which provide key information about how they may have formed,” said Lance Benner, principal scientist at JPL who helped lead the observations.

e1-pia26384-2011ul21-jun27-all.jpg?w=204
These seven radar observations by the Deep Space Network’s Goldstone Solar System Radar shows the mile-wide asteroid 2011 UL21 during its June 27 close approach with Earth from about 4 million miles away. The asteroid and its small moon (a bright dot at the bottom of the image) are circled in white.
NASA/JPL-Caltech

Second Close Approach

Two days later, on June 29, the same team observed the asteroid 2024 MK pass our planet from a distance of only 184,000 miles (295,000 kilometers), or slightly more than three-quarters of the distance between the Moon and Earth. About 500 feet (150 meters) wide, this asteroid appears to be elongated and angular, with prominent flat and rounded regions. For these observations, the scientists also used DSS-14 to transmit radio waves to the object, but they used Goldstone’s 114-foot (34-meter) DSS-13 antenna to receive the signal that bounced off the asteroid and came back to Earth. The result of this “bistatic” radar observation is a detailed image of the asteroid’s surface, revealing concavities, ridges, and boulders about 30 feet (10 meters) wide.

Close approaches of near-Earth objects the size of 2024 MK are relatively rare, occurring about every couple of decades, on average, so the JPL team sought to gather as much data about the object as possible. “This was an extraordinary opportunity to investigate the physical properties and obtain detailed images of a near-Earth asteroid,” said Benner.

e2-pia26150-photolab-2024-06-11-225322-b
This sunset photo shows NASA’s Deep Space Station 14 (DSS-14), the 230-foot-wide (70-meter) antenna at the Goldstone Deep Space Communications Complex near Barstow, California.
NASA/JPL-Caltech

The asteroid 2024 MK was first reported on June 16 by the NASA-funded Asteroid Terrestrial-impact Last Alert System (ATLAS) at Sutherland Observing Station in South Africa. Its orbit was changed by Earth’s gravity as it passed by, reducing its 3.3-year orbital period around the Sun by about 24 days. Although it is classified as a potentially hazardous asteroid, calculations of its future motion show that it does not pose a threat to our planet for the foreseeable future.

The Goldstone Solar System Radar Group is supported by NASA’s Near-Earth Object Observations Program within the Planetary Defense Coordination Office at the agency’s headquarters in Washington. Managed by JPL, the Deep Space Network receives programmatic oversight from Space Communications and Navigation program office within the Space Operations Mission Directorate, also at NASA Headquarters.

More information about planetary radar and near-Earth objects can be found at:

https://www.jpl.nasa.gov/asteroid-watch

News Media Contact

Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov

2024-097

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Typically, asteroids — like the one depicted in this artist’s concept — originate from the main asteroid belt between the orbits of Mars and Jupiter, but a small population of near-Earth objects may also come from the Moon’s surface after being ejected into space by an impact.NASA/JPL-Caltech The near-Earth object was likely ejected into space after an impact thousands of years ago. Now it could contribute new insights to asteroid and lunar science.
      The small near-Earth object 2024 PT5 captured the world’s attention last year after a NASA-funded telescope discovered it lingering close to, but never orbiting, our planet for several months. The asteroid, which is about 33 feet (10 meters) wide, does not pose a hazard to Earth, but its orbit around the Sun closely matches that of our planet, hinting that it may have originated nearby.
      As described in a study published Jan. 14 in the Astrophysical Journal Letters, researchers have collected further evidence of 2024 PT5 being of local origin: It appears to be composed of rock broken off from the Moon’s surface and ejected into space after a large impact.
      “We had a general idea that this asteroid may have come from the Moon, but the smoking gun was when we found out that it was rich in silicate minerals — not the kind that are seen on asteroids but those that have been found in lunar rock samples,” said Teddy Kareta, an astronomer at Lowell Observatory in Arizona, who led the research. “It looks like it hasn’t been in space for very long, maybe just a few thousand years or so, as there’s a lack of space weathering that would have caused its spectrum to redden.”
      The asteroid was first detected on Aug. 7, 2024, by the NASA-funded Sutherland, South Africa, telescope of the University of Hawai’i’s Asteroid Terrestrial-impact Last Alert System (ATLAS). Kareta’s team then used observations from the Lowell Discovery Telescope and the NASA Infrared Telescope Facility (IRTF) at the Mauna Kea Observatory in Hawai’i to show that the spectrum of reflected sunlight from the small object’s surface didn’t match that of any known asteroid type; instead, the reflected light more closely matched rock from the Moon.
      Not (Old) Rocket Science
      A second clue came from observing how the object moves. Along with asteroids, Space Age debris, such as old rockets from historic launches, can also be found in Earth-like orbits.
      The difference in their orbits has to do with how each type responds to solar radiation pressure, which comes from the momentum of photons — quantum particles of light from the Sun — exerting a tiny force when they hit a solid object in space. This momentum exchange from many photons over time can push an object around ever so slightly, speeding it up or slowing it down. While a human-made object, like a hollow rocket booster, will move like an empty tin can in the wind, a natural object, such as an asteroid, will be much less affected.
      Researchers studying asteroid 2024 PT5 have plotted its looping motion on two graphs. To a trained eye, they show that the object never gets captured by Earth’s gravity but, instead, lingers nearby before continuing its orbit around the Sun. NASA/JPL-Caltech To rule out 2024 PT5 being space junk, scientists at NASA’s Center for Near Earth Object Studies (CNEOS), which is managed by the agency’s Jet Propulsion Laboratory in Southern California, analyzed its motion. Their precise calculations of the object’s motion under the force of gravity ultimately enabled them to search for additional motion caused by solar radiation pressure. In this case, the effects were found to be too small for the object to be artificial, proving 2024 PT5 is most likely of natural origin.
      “Space debris and space rocks move slightly differently in space,” said Oscar Fuentes-Muñoz, a study coauthor and NASA postdoctoral fellow at JPL working with the CNEOS team. “Human-made debris is usually relatively light and gets pushed around by the pressure of sunlight. That 2024 PT5 doesn’t move this way indicates it is much denser than space debris.”
      Asteroid Lunar Studies
      The discovery of 2024 PT5 doubles the number of known asteroids thought to originate from the Moon. Asteroid 469219 Kamo’oalewa was found in 2016 with an Earth-like orbit around the Sun, indicating that it may also have been ejected from the lunar surface after a large impact. As telescopes become more sensitive to smaller asteroids, more potential Moon boulders will be discovered, creating an exciting opportunity not only for scientists studying a rare population of asteroids, but also for scientists studying the Moon.
      If a lunar asteroid can be directly linked to a specific impact crater on the Moon, studying it could lend insights into cratering processes on the pockmarked lunar surface. Also, material from deep below the lunar surface — in the form of asteroids passing close to Earth — may be accessible to future scientists to study.
      “This is a story about the Moon as told by asteroid scientists,” said Kareta. “It’s a rare situation where we’ve gone out to study an asteroid but then strayed into new territory in terms of the questions we can ask of 2024 PT5.”
      The ATLAS, IRTF, and CNEOS projects are funded by NASA’s planetary defense program, which is managed by the Planetary Defense Coordination Office at NASA Headquarters in Washington. 
      For more information about asteroids and comets, visit:
      https://www.jpl.nasa.gov/topics/asteroids/
      NASA Asteroid Experts Create Hypothetical Impact Scenario for Exercise NASA Researchers Discover More Dark Comets Lesson Plan: How to Explore an Asteroid News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Kevin Schindler
      Lowell Observatory Public Information Officer
      928-607-1387
      kevin@lowell.edu
      2025-007
      Share
      Details
      Last Updated Jan 22, 2025 Related Terms
      Asteroids Earth's Moon Jet Propulsion Laboratory Planetary Defense Planetary Defense Coordination Office Planetary Science Explore More
      5 min read How New NASA, India Earth Satellite NISAR Will See Earth
      Article 24 hours ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
      Article 1 day ago 4 min read NASA Scientists, Engineers Receive Presidential Early Career Awards 
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Trailer for NASA’s upcoming documentary, “Planetary Defenders,” which will take audiences inside the high-stakes world of asteroid hunting and planetary defense. NASA is bringing the high-stakes world of planetary defense to the Sundance Film Festival, highlighting its upcoming documentary, “Planetary Defenders,” during a panel ahead of its spring 2025 premiere on the agency’s streaming service.
      “We’re thrilled that NASA is attending Sundance Film Festival for the first time – a festival renowned for its innovative spirit,” said Brittany Brown, director, NASA Office of Communications Digital and Technology Division, at the agency’s Headquarters in Washington. “Our participation represents a groundbreaking opportunity for NASA to engage with the film industry and share new avenues for collaborative storytelling. By connecting with the creative minds at the festival, we aim to inspire new narratives, explore new avenues for collaborative storytelling, and ignite a renewed sense of wonder in space exploration.”
      The NASA+ film explores a compelling question: How would humanity respond if we discovered an asteroid headed for Earth? Far from science fiction, “Planetary Defenders” follows real-life astronomers and other experts as they navigate the challenges of asteroid detection and safeguarding our planet from potential hazards.
      “NASA is home to some of the greatest stories ever told, and NASA’s new streaming platform NASA+ is dedicated to sharing these stories to inspire the next generation,” said Rebecca Sirmons, general manager and head of NASA+. “We are honored to host a panel at this year’s Sundance Film Festival discussing our upcoming NASA+ documentary “Planetary Defenders.”
      The panel, entitled “You Bet Your Asteroid: NASA Has a Story to Tell,” will start at 1:30 p.m. MST on Sunday, Jan. 26, at the Filmmaker Lodge in the Elks Building, 550 Main St., 2nd Floor, Park City, Utah. The event will include a discussion about the film followed by a Q&A session. Attendees also will have the opportunity to meet NASA experts and some of the planetary defenders themselves.
      Panelists include:
      Rebecca Sirmons, head of NASA+, NASA Scott Bednar, filmmaker and director, NASA 360/National Institute of Aerospace Jessie Wilde, filmmaker and director, NASA 360/National Institute of Aerospace Dr. Kelly Fast, acting planetary defense officer, NASA’s Planetary Defense Coordination Office David Rankin, senior survey operations specialist, Catalina Sky Survey Dr. Vishnu Reddy, professor of planetary sciences and director of the Space4 Center, University of Arizona Media are encouraged to RSVP in advance and may request one-on-one interviews with NASA experts following the panel by contacting Karen Fox at karen.c.fox@nasa.gov.
      Through NASA+, the agency is continuing its decades long tradition of sharing live events, original content, and the latest news while NASA works to improve life on Earth through innovation, exploration, and discovery for the benefit of all. The free, on-demand streaming service is available to download without a subscription on most major platforms via the NASA App on iOS and Android mobile and tablet devices, as well as streaming media players like Roku, Apple TV, and Fire TV.
      To keep up with the latest news from NASA’s planetary defense program, visit:
      https://www.nasa.gov/planetarydefense
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      abbey.a.donaldson@nasa.gov
      Share
      Details
      Last Updated Jan 17, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      NASA+ Asteroids Planetary Defense Planetary Defense Coordination Office Planetary Science Planetary Science Division Science Mission Directorate Social Media View the full article
    • By NASA
      Planetary Defenders (Official NASA Trailer)
    • By European Space Agency
      Last night a crucial step in the European Space Agency’s eclipse-making Proba-3 mission was completed: the two spacecraft, flying jointly since launch, have successfully separated. This leaves them ready to begin their cosmic dance in the world’s first-ever precision formation-flying mission.
      View the full article
    • By NASA
      Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 4 Min Read NASA’s Hubble Tracks Down a ‘Blue Lurker’ Among Stars
      Evolution of a “Blue Lurker” Star in a Triple System Credits:
      NASA, ESA, Leah Hustak (STScI) The name “blue lurker” might sound like a villainous character from a superhero movie. But it is a rare class of star that NASA’s Hubble Space Telescope explored by looking deeply into the open star cluster M67, roughly 2,800 light-years away.
      Forensics with Hubble data show that the star has had a tumultuous life, mixing with two other stars gravitationally bound together in a remarkable triple-star system. The star has a kinship to so-called “blue stragglers,” which are hotter, brighter, and bluer than expected because they are likely the result of mergers between stars.
      Evolution of a “Blue Lurker” Star in a Triple System Panel 1: A triple star system containing three Sun-like stars. Two are very tightly orbiting. The third star has a much wider orbit. Panel 2: The close stellar pair spiral together and merge to form one more massive star. Panel 3: The merged star evolves into a giant star. As the huge photosphere expands, some of the material falls onto the outer companion, causing the companion to grow larger and its rotation rate to increase. Panels 4-5: The central merged star eventually burns out and forms a massive white dwarf, and the outer companion spirals in towards the white dwarf, leaving a binary star system with a tighter orbit. Panel 6: The surviving outer companion is much like our Sun but nicknamed a “blue lurker.” Although it is slightly brighter bluer than expected because of the earlier mass-transfer from the central star and is now rotating very rapidly, these features are subtle. The star could easily be mistaken for a normal Sun-like star despite its exotic evolutionary history. NASA, ESA, Leah Hustak (STScI) The blue lurker is spinning much faster than expected, an unusual behavior that led to its identification. Otherwise it looks like a normal Sun-like star. The term “blue” is a bit of a misnomer because the star’s color blends in with all the other solar-mass stars in the cluster. Hence it is sort of “lurking” among the common stellar population.
      The spin rate is evidence that the lurker must have siphoned in material from a companion star, causing its rotation to speed up. The star’s high spin rate was discovered with NASA’s retired Kepler space telescope. While normal Sun-like stars typically take about 30 days to complete one rotation, the lurker takes only four days.
      How the blue lurker got that way is a “super complicated evolutionary story,” said Emily Leiner of Illinois Institute of Technology in Chicago. “This star is really exciting because it’s an example of a star that has interacted in a triple-star system.” The blue lurker originally rotated more slowly and orbited a binary system consisting of two Sun-like stars.
      Around 500 million years ago, the two stars in that binary merged, creating a single, much more massive star. This behemoth soon swelled into a giant star, dumping some of its own material onto the blue lurker and spinning it up in the process. Today, we observe that the blue lurker is orbiting a white dwarf star — the burned out remains of the massive merger.
      “We know these multiple star systems are fairly common and are going to lead to really interesting outcomes,” Leiner explained. “We just don’t yet have a model that can reliably connect through all of those stages of evolution. Triple-star systems are about 10 percent of the Sun-like star population. But being able to put together this evolutionary history is challenging.”
      Hubble observed the white dwarf companion star that the lurker orbits. Using ultraviolet spectroscopy, Hubble found the white dwarf is very hot (as high as 23,000 degrees Fahrenheit, or roughly three times the Sun’s surface temperature) and a heavyweight at 0.72 solar masses. According to theory, hot white dwarfs in M67 should be only about 0.5 solar masses. This is evidence that the white dwarf is the byproduct of the merger of two stars that once were part of a triple-star system.
      “This is one of the only triple systems where we can tell a story this detailed about how it evolved,” said Leiner. “Triples are emerging as potentially very important to creating interesting, explosive end products. It’s really unusual to be able to put constraints on such a system as we are exploring.”
      Leiner’s results are being presented at the 245th meeting of the American Astronomical Society in Washington, D.C.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Emily Leiner
      Illinois Institute of Technology, Chicago, IL
      Share








      Details
      Last Updated Jan 13, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Open Clusters Stars Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble’s Night Sky Challenge



      Hubble Multimedia


      View the full article
  • Check out these Videos

×
×
  • Create New...