Jump to content

NASA’s Planetary Radar Tracks Two Large Asteroid Close Approaches


NASA

Recommended Posts

  • Publishers
A series of images showing different rotational views of asteroid 4179 Toutatis taken from radar data, against a black background. The asteroid appears irregular in shape.
The Goldstone Solar System Radar, part of NASA’s Deep Space Network, made these observations of the recently discovered 500-foot-wide (150-meter-wide) asteroid 2024 MK, which made its closest approach — within about 184,000 miles (295,000 kilometers) of Earth — on June 29.
NASA/JPL-Caltech

The Deep Space Network’s Goldstone planetary radar had a busy few days observing asteroids 2024 MK and 2011 UL21 as they safely passed Earth.

Scientists at NASA’s Jet Propulsion Laboratory in Southern California recently tracked two asteroids as they flew by our planet. One turned out to have a little moon orbiting it, while the other had been discovered only 13 days before its closest approach to Earth. There was no risk of either near-Earth object impacting our planet, but the radar observations taken during these two close approaches will provide valuable practice for planetary defense, as well as information about their sizes, orbits, rotation, surface details, and clues as to their composition and formation.

Passing Earth on June 27 at a distance of 4.1 million miles (6.6 million kilometers), or about 17 times the distance between the Moon and Earth, the asteroid 2011 UL21 was discovered in 2011 by the NASA-funded Catalina Sky Survey, in Tucson, Arizona. But this is the first time it has come close enough to Earth to be imaged by radar. While the nearly mile-wide (1.5-kilometer-wide) object is classified as being potentially hazardous, calculations of its future orbits show that it won’t pose a threat to our planet for the foreseeable future.

2-pia26383-main-2024mk-16.jpg?w=2048
Because close approaches by asteroids the size of 2024 MK are relatively rare, JPL’s planetary radar team gathered as much information about the near-Earth object as possible. This mosaic shows the spinning asteroid in one-minute increments about 16 hours after its closest approach with Earth.
NASA/JPL-Caltech

Using the Deep Space Network’s 230-foot-wide (70-meter) Goldstone Solar System Radar, called Deep Space Station 14 (DSS-14), near Barstow, California, JPL scientists transmitted radio waves to the asteroid and received the reflected signals by the same antenna. In addition to determining the asteroid is roughly spherical, they discovered that it’s a binary system: A smaller asteroid, or moonlet, orbits it from a distance of about 1.9 miles (3 kilometers).

“It is thought that about two-thirds of asteroids of this size are binary systems, and their discovery is particularly important because we can use measurements of their relative positions to estimate their mutual orbits, masses, and densities, which provide key information about how they may have formed,” said Lance Benner, principal scientist at JPL who helped lead the observations.

e1-pia26384-2011ul21-jun27-all.jpg?w=204
These seven radar observations by the Deep Space Network’s Goldstone Solar System Radar shows the mile-wide asteroid 2011 UL21 during its June 27 close approach with Earth from about 4 million miles away. The asteroid and its small moon (a bright dot at the bottom of the image) are circled in white.
NASA/JPL-Caltech

Second Close Approach

Two days later, on June 29, the same team observed the asteroid 2024 MK pass our planet from a distance of only 184,000 miles (295,000 kilometers), or slightly more than three-quarters of the distance between the Moon and Earth. About 500 feet (150 meters) wide, this asteroid appears to be elongated and angular, with prominent flat and rounded regions. For these observations, the scientists also used DSS-14 to transmit radio waves to the object, but they used Goldstone’s 114-foot (34-meter) DSS-13 antenna to receive the signal that bounced off the asteroid and came back to Earth. The result of this “bistatic” radar observation is a detailed image of the asteroid’s surface, revealing concavities, ridges, and boulders about 30 feet (10 meters) wide.

Close approaches of near-Earth objects the size of 2024 MK are relatively rare, occurring about every couple of decades, on average, so the JPL team sought to gather as much data about the object as possible. “This was an extraordinary opportunity to investigate the physical properties and obtain detailed images of a near-Earth asteroid,” said Benner.

e2-pia26150-photolab-2024-06-11-225322-b
This sunset photo shows NASA’s Deep Space Station 14 (DSS-14), the 230-foot-wide (70-meter) antenna at the Goldstone Deep Space Communications Complex near Barstow, California.
NASA/JPL-Caltech

The asteroid 2024 MK was first reported on June 16 by the NASA-funded Asteroid Terrestrial-impact Last Alert System (ATLAS) at Sutherland Observing Station in South Africa. Its orbit was changed by Earth’s gravity as it passed by, reducing its 3.3-year orbital period around the Sun by about 24 days. Although it is classified as a potentially hazardous asteroid, calculations of its future motion show that it does not pose a threat to our planet for the foreseeable future.

The Goldstone Solar System Radar Group is supported by NASA’s Near-Earth Object Observations Program within the Planetary Defense Coordination Office at the agency’s headquarters in Washington. Managed by JPL, the Deep Space Network receives programmatic oversight from Space Communications and Navigation program office within the Space Operations Mission Directorate, also at NASA Headquarters.

More information about planetary radar and near-Earth objects can be found at:

https://www.jpl.nasa.gov/asteroid-watch

News Media Contact

Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov

2024-097

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept depicts an asteroid drifting through space. Many such objects frequently pass Earth. To help prepare for the discovery of one with a chance of impacting our planet, NASA leads regular exercises to figure out how the international community could respond to such a threat.NASA/JPL-Caltech The fifth Planetary Defense Interagency Tabletop Exercise focused on an asteroid impact scenario designed by NASA JPL’s Center for Near Earth Object Studies.
      A large asteroid impacting Earth is highly unlikely for the foreseeable future. But because the damage from such an event could be great, NASA leads hypothetical asteroid impact “tabletop” exercises every two years with experts and decision-makers from federal and international agencies to address the many uncertainties of an impact scenario. The most recent exercise took place this past April, with a preliminary report being issued on June 20.
      Making such a scenario realistic and useful for all involved is no small task. Scientists from the Center for Near Earth Object Studies (CNEOS) at NASA’s Jet Propulsion Laboratory in Southern California, which specializes in the tracking and orbital determination of asteroids and comets and finding out if any are hazards to Earth, have played a major role in designing these exercises since the first 11 years ago.
      “These hypothetical scenarios are complex and take significant effort to design, so our purpose is to make them useful and challenging for exercise participants and decision-makers to hone their processes and procedures to quickly come to a plan of action while addressing gaps in the planetary defense community’s knowledge,” said JPL’s Paul Chodas, the director of CNEOS.
      The Impact Scenario
      This year’s scenario: A hypothetical asteroid, possibly several hundred yards across, has been discovered, with an estimated 72% chance of impacting Earth in 14 years. Potential impact locations include heavily populated areas in North America, Southern Europe, and North Africa, but there is still a 28% chance the asteroid will miss Earth. After several months of being tracked, the asteroid moves too close to the Sun, making further observations impossible for another seven months. Decision-makers must figure out what to do.
      Explore asteroids and near-Earth objects in real-time 3D Leading the exercise was NASA’s Planetary Defense Coordination Office (PDCO), the Federal Emergency Management Agency Response Directorate, and the Department of State Office of Space Affairs. Over the course of two days in April, participants gathered at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, which hosted the event, to consider the potential national and global responses to the scenario.
      “This was a very successful tabletop exercise, with nearly 100 participants from U.S. government agencies and, for the first time, international planetary defense experts,” said Terik Daly from APL, who coordinated the exercise. “An asteroid impact would have severe national and international ramifications, so should this scenario play out for real, we’d need international collaboration.”
      Reality Informs Fiction
      In real life, CNEOS calculates the orbit of every known near-Earth object to provide assessments of future potential impact hazards in support of NASA’s planetary defense program. To make this scenario realistic, the CNEOS team simulated all the observations in the months leading up to the exercise and used orbital determination calculations to simulate the probability of impact.
      “At this point in time, the impact was likely but not yet certain, and there were significant uncertainties in the object’s size and the impact location,” said Davide Farnocchia, a navigation engineer at JPL and CNEOS, who led the design of the asteroid’s orbit. “It was interesting to see how this affected the decision-makers’ choices and how the international community might respond to a real-world threat 14 years out.”
      Options to Deflect
      Preparation, planning, and decision-making have been key focal points of all five exercises that have taken place over the past 11 years. For instance, could a reconnaissance spacecraft be sent to the asteroid to gather additional data on its orbit and better determine its size and mass? Would it also be feasible to attempt deflecting the asteroid so that it would miss Earth? The viability of this method was recently demonstrated by NASA’s Double Asteroid Redirection Test (DART), which impacted the asteroid moonlet Dimorphos on Sept. 26, 2022, slightly changing its trajectory. Other methods of deflection have also been considered during the exercises.
      But any deflection or reconnaissance mission would need many years of preparation, requiring the use of advanced observatories capable of finding hazardous asteroids as early as possible. NASA’s Near-Earth Object Surveyor, or NEO Surveyor, is one such observatory. Managed by JPL and planned for launch in late 2027, the infrared space telescope will detect light and dark asteroids, including those that orbit near the Sun. In doing so, NEO Surveyor will support PDCO’s objectives to discover any hazardous asteroids as early as possible so that there would be more time to launch a deflection mission to potential threats.  
      To find out the outcome of the exercise, read NASA’s preliminary summary.
      For more information about CNEOS, visit:
      https://cneos.jpl.nasa.gov/
      NASA Study: Asteroid’s Orbit, Shape Changed After DART Impact NASA Program Predicted Impact of Small Asteroid Over Ontario, Canada Classroom Activity: Modeling an Asteroid News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters
      202-358-1600 / 202-802-5345
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      2024-094
      Share
      Details
      Last Updated Jul 02, 2024 Related Terms
      Asteroids NEA Scout (Near Earth Asteroid Scout) NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Planetary Defense Planetary Defense Coordination Office Potentially Hazardous Asteroid (PHA) Explore More
      5 min read NASA’s NEOWISE Infrared Heritage Will Live On
      Article 18 hours ago 6 min read Surprising Phosphate Finding in NASA’s OSIRIS-REx Asteroid Sample
      Article 6 days ago 3 min read NASA Selects Participating Scientists to Join ESA’s Hera Mission
      NASA has selected 12 participating scientists to join ESA’s (European Space Agency) Hera mission, which…
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      View of the Nova-C landing area near Malapert A in the South Pole region of the Moon. North is to the right. Taken by LROC (Lunar Reconnaissance Orbiter Camera) NAC (Narrow Angle Camera).NASA/GSFC/Arizona State University NASA has released two white papers associated with the agency’s Moon to Mars architecture efforts. The papers, one on lunar mobility drivers and needs, and one on lunar surface cargo, detail NASA’s latest thinking on specific areas of its lunar exploration strategy.
      While NASA has established a yearly cadence of releasing new documents associated with its Moon to Mars architecture, the agency occasionally releases mid-cycle findings to share essential information in areas of interest for its stakeholders.
      “Lunar Mobility Drivers and Needs” discusses the need to move cargo and assets on the lunar surface, from landing sites to points of use, and some of the factors that will significantly impact mobility systems.
      “Lunar Surface Cargo” analyses some of the current projected needs — and identifies current capability gaps — for the transportation of cargo to the lunar surface.
      The Moon to Mars architecture approach incorporates feedback from U.S. industry, academia, international partners, and the NASA workforce. The agency typically releases a series of technical documents at the end of its annual analysis cycle, including an update of the Architecture Definition Document and white papers that elaborate on frequently raised topics.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      You can find all of NASA’s Moon to Mars architecture documents at:
      https://www.nasa.gov/moontomarsarchitecture
      Share
      Details
      Last Updated Jun 28, 2024 Related Terms
      Humans in Space Explore More
      2 min read Unity in Orbit: Astronauts Soar with Pride Aboard Station 
      Article 3 days ago 5 min read Six Adapters for Crewed Artemis Flights Tested, Built at NASA Marshall
      Article 3 days ago 5 min read Lakita Lowe: Leading Space Commercialization Innovations and Fostering STEM Engagement 
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 Min Read Surprising Phosphate Finding in NASA’s OSIRIS-REx Asteroid Sample
      A microscope image of a dark Bennu particle, about a millimeter long, with a crust of bright phosphate. To the right is a smaller fragment that broke off. Credits: From Lauretta & Connolly et al. (2024) Meteoritics & Planetary Science, doi:10.1111/maps.14227. Early analysis of the asteroid Bennu sample returned by NASA’s OSIRIS-REx mission has revealed dust rich in carbon, nitrogen, and organic compounds, all of which are essential components for life as we know it. Dominated by clay minerals, particularly serpentine, the sample mirrors the type of rock found at mid-ocean ridges on Earth. The magnesium-sodium phosphate found in the sample hints that the asteroid could have splintered off from an ancient, small, primitive ocean world. The phosphate was a surprise to the team because the mineral had not been detected by the OSIRIS-REx spacecraft while at Bennu. While a similar phosphate was found in the asteroid Ryugu sample delivered by JAXA’s (Japan Aerospace Exploration Agency) Hayabusa2 mission in 2020, the magnesium-sodium phosphate detected in the Bennu sample stands out for its purity (that is, the lack of other materials included in the mineral) and the size of its grains, unprecedented in any meteorite sample. Scientists have eagerly awaited the opportunity to dig into the 4.3-ounce (121.6-gram) pristine asteroid Bennu sample collected by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission since it was delivered to Earth last fall. They hoped the material would hold secrets of the solar system’s past and the prebiotic chemistry that might have led to the origin of life on Earth. An early analysis of the Bennu sample, published June 26 in Meteoritics & Planetary Science, demonstrates this excitement was warranted.
      The OSIRIS-REx Sample Analysis Team found that Bennu contains the original ingredients that formed our solar system. The asteroid’s dust is rich in carbon and nitrogen, as well as organic compounds, all of which are essential components for life as we know it. The sample also contains magnesium-sodium phosphate, which was a surprise to the research team, because it wasn’t seen in the remote sensing data collected by the spacecraft at Bennu. Its presence in the sample hints that the asteroid could have splintered off from a long-gone, tiny, primitive ocean world.
      A Phosphate Surprise
      Analysis of the Bennu sample unveiled intriguing insights into the asteroid’s composition. Dominated by clay minerals, particularly serpentine, the sample mirrors the type of rock found at mid-ocean ridges on Earth, where material from the mantle, the layer beneath Earth’s crust, encounters water.
      This interaction doesn’t just result in clay formation; it also gives rise to a variety of minerals like carbonates, iron oxides, and iron sulfides. But the most unexpected discovery is the presence of water-soluble phosphates. These compounds are components of biochemistry for all known life on Earth today.
      A tiny fraction of the asteroid Bennu sample returned by NASA’s OSIRIS-REx mission, shown in microscope images. The top-left pane shows a dark Bennu particle, about a millimeter long, with an outer crust of bright phosphate. The other three panels show progressively zoomed-in views of a fragment of the particle that split off along a bright vein containing phosphate, captured by a scanning electron microscope.From Lauretta & Connolly et al. (2024) Meteoritics & Planetary Science, doi:10.1111/maps.14227. While a similar phosphate was found in the asteroid Ryugu sample delivered by JAXA’s (Japan Aerospace Exploration Agency) Hayabusa2 mission in 2020, the magnesium-sodium phosphate detected in the Bennu sample stands out for its purity — that is, the lack of other materials in the mineral — and the size of its grains, unprecedented in any meteorite sample.
      The finding of magnesium-sodium phosphates in the Bennu sample raises questions about the geochemical processes that concentrated these elements and provides valuable clues about Bennu’s historic conditions.
      “The presence and state of phosphates, along with other elements and compounds on Bennu, suggest a watery past for the asteroid,” said Dante Lauretta, co-lead author of the paper and principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “Bennu potentially could have once been part of a wetter world. Although, this hypothesis requires further investigation.”
      “OSIRIS-REx gave us exactly what we hoped: a large pristine asteroid sample rich in nitrogen and carbon from a formerly wet world,” said Jason Dworkin, a co-author on the paper and the OSIRIS-REx project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      From a Young Solar System
      Despite its possible history of interaction with water, Bennu remains a chemically primitive asteroid, with elemental proportions closely resembling those of the Sun.
      “The sample we returned is the largest reservoir of unaltered asteroid material on Earth right now,” said Lauretta.
      This composition offers a glimpse into the early days of our solar system, over 4.5 billion years ago. These rocks have retained their original state, having neither melted nor resolidified since their inception, affirming their ancient origins.
      Hints at Life’s Building Blocks
      The team has confirmed the asteroid is rich in carbon and nitrogen. These elements are crucial in understanding the environments where Bennu’s materials originated and the chemical processes that transformed simple elements into complex molecules, potentially laying the groundwork for life on Earth.
      “These findings underscore the importance of collecting and studying material from asteroids like Bennu — especially low-density material that would typically burn up upon entering Earth’s atmosphere,” said Lauretta. “This material holds the key to unraveling the intricate processes of solar system formation and the prebiotic chemistry that could have contributed to life emerging on Earth.”
      What’s Next
      Dozens more labs in the United States and around the world will receive portions of the Bennu sample from NASA’s Johnson Space Center in Houston in the coming months, and many more scientific papers describing analyses of the Bennu sample are expected in the next few years from the OSIRIS-REx Sample Analysis Team.
      “The Bennu samples are tantalizingly beautiful extraterrestrial rocks,” said Harold Connolly, co-lead author on the paper and OSIRIS-REx mission sample scientist at Rowan University in Glassboro, New Jersey. “Each week, analysis by the OSIRIS-REx Sample Analysis Team provides new and sometimes surprising findings that are helping place important constraints on the origin and evolution of Earth-like planets.”
      Launched on Sept. 8, 2016, the OSIRIS-REx spacecraft traveled to near-Earth asteroid Bennu and collected a sample of rocks and dust from the surface. OSIRIS-REx, the first U.S. mission to collect a sample from an asteroid, delivered the sample to Earth on Sept. 24, 2023.
      NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA Johnson. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (Canadian Space Agency) and asteroid sample science collaboration with JAXA’s Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
      Find more information about NASA’s OSIRIS-REx mission at:
      https://www.nasa.gov/osiris-rex
      By Mikayla Mace Kelley
      University of Arizona, Tuscon
      News Media Contacts
      Karen Fox / Erin Morton
      NASA Headquarters, Washington
      202-385-1287 / 202-805-9393
      karen.c.fox@nasa.gov / erin.morton@nasa.gov  
      Rani Gran
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-332-6975
      rani.c.gran@nasa.gov
      Share
      Details
      Last Updated Jun 26, 2024 EditorRob GarnerLocationGoddard Space Flight Center Related Terms
      OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Asteroids Astrobiology Astromaterials Bennu Goddard Space Flight Center Johnson Space Center Planetary Science The Solar System View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The JunoCam instrument aboard NASA’s Juno spacecraft captured two volcanic plumes rising above the horizon of Jupiter’s moon Io. The image was taken Feb. 3 from a distance of about 2,400 miles (3,800 kilometers).Image data: NASA/JPL-Caltech/SwRI/MSSS, Image processing by Andrea Luck (CC BY) Infrared imagery from the solar-powered spacecraft heats up the discussion on the inner workings of Jupiter’s hottest moon.
      New findings from NASA’s Juno probe provide a fuller picture of how widespread the lava lakes are on Jupiter’s moon Io and include first-time insights into the volcanic processes at work there. These results come courtesy of Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument, contributed by the Italian Space Agency, which “sees” in infrared light. Researchers published a paper on Juno’s most recent volcanic discoveries on June 20 in the journal Nature Communications Earth and Environment.
      Io has intrigued the astronomers since 1610, when Galileo Galilei first discovered the Jovian moon, which is slightly larger than Earth. Some 369 years later, NASA’s Voyager 1 spacecraft captured a volcanic eruption on the moon. Subsequent missions to Jupiter, with more Io flybys, discovered additional plumes — along with lava lakes. Scientists now believe Io, which is stretched and squeezed like an accordion by neighboring moons and massive Jupiter itself, is the most volcanically active world in the solar system. But while there are many theories on the types of volcanic eruptions across the surface of the moon, little supporting data exists.
      In both May and October 2023, Juno flew by Io, coming within about 21,700 miles (35,000 kilometers) and 8,100 miles (13,000 kilometers), respectively. Among Juno’s instruments getting a good look at the beguiling moon was JIRAM.
      Infrared data collected Oct. 15, 2023, by the JIRAM instrument aboard NASA’s Juno shows Chors Patera, a lava lake on Jupiter’s moon Io. The team believes the lake is largely covered by a thick, molten crust, with a hot ring around the edges where lava from Io’s interior is directly exposed to space.NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM/MSSS Designed to capture the infrared light (which is not visible to the human eye) emerging from deep inside Jupiter, JIRAM probes the weather layer down to 30 to 45 miles (50 to 70 kilometers) below the gas giant’s cloud tops. But during Juno’s extended mission, the mission team has also used the instrument to study the moons Io, Europa, Ganymede, and Callisto. The JIRAM Io imagery showed the presence of bright rings surrounding the floors of numerous hot spots.
      “The high spatial resolution of JIRAM’s infrared images, combined with the favorable position of Juno during the flybys, revealed that the whole surface of Io is covered by lava lakes contained in caldera-like features,” said Alessandro Mura, a Juno co-investigator from the National Institute for Astrophysics in Rome. “In the region of Io’s surface in which we have the most complete data, we estimate about 3% of it is covered by one of these molten lava lakes.” (A caldera is a large depression formed when a volcano erupts and collapses.)
      Fire-Breathing Lakes
      JIRAM’s Io flyby data not only highlights the moon’s abundant lava reserves, but also provides a glimpse of what may be going on below the surface. Infrared images of several Io lava lakes show a thin circle of lava at the border, between the central crust that covers most of the lava lake and the lake’s walls. Recycling of melt is implied by the lack of lava flows on and beyond the rim of the lake, indicating that there is a balance between melt that has erupted into the lava lakes and melt that is circulated back into the subsurface system.
      This animation is an artist’s concept of Loki Patera, a lava lake on Jupiter’s moon Io, made using data from the JunoCam imager aboard NASA’s Juno spacecraft. With multiple islands in its interior, Loki is a depression filled with magma and rimmed with molten lava. NASA/JPL-Caltech/SwRI/MSSS “We now have an idea of what is the most frequent type of volcanism on Io: enormous lakes of lava where magma goes up and down,” said Mura. “The lava crust is forced to break against the walls of the lake, forming the typical lava ring seen in Hawaiian lava lakes. The walls are likely hundreds of meters high, which explains why magma is generally not observed spilling out of the paterae” — bowl-shaped features created by volcanism — “and moving across the moon’s surface.”
      JIRAM data suggests that most of the surface of these Io hot spots is composed of a rocky crust that moves up and down cyclically as one contiguous surface due to the central upwelling of magma. In this hypothesis, because the crust touches the lake’s walls, friction keeps it from sliding, causing it to deform and eventually break, exposing lava just below the surface.
      An alternative hypothesis remains in play: Magma is welling up in the middle of the lake, spreading out and forming a crust that sinks along the rim of the lake, exposing lava.
      “We are just starting to wade into the JIRAM results from the close flybys of Io in December 2023 and February 2024,” said Scott Bolton, principal investigator for Juno at the Southwest Research Institute in San Antonio. “The observations show fascinating new information on Io’s volcanic processes. Combining these new results with Juno’s longer-term campaign to monitor and map the volcanoes on Io’s never-before-seen north and south poles, JIRAM is turning out to be one of the most valuable tools to learn how this tortured world works.”
      Juno executed its 62nd flyby of Jupiter — which included an Io flyby at an altitude of about 18,175 miles (29,250 kilometers) — on June 13. The 63rd flyby of the gas giant is scheduled for July 16.
      More About the Mission
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.
      More information about Juno is available at:
      https://science.nasa.gov/mission/juno
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters
      202-385-1287 / 202-802-5345
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      Deb Schmid
      Southwest Research Institute, San Antonio
      210-522-2254dschmid@swri.org
      Share
      Details
      Last Updated Jun 26, 2024 Related Terms
      Juno Jet Propulsion Laboratory Jupiter Jupiter Moons Explore More
      5 min read Why Scientists Are Intrigued by Air in NASA’s Mars Sample Tubes
      Article 6 days ago 2 min read Voyager 1 Returning Science Data From All Four Instruments
      The spacecraft has resumed gathering information about interstellar space. NASA’s Voyager 1 spacecraft is conducting…
      Article 2 weeks ago 4 min read NASA Announces New System to Aid Disaster Response
      In early May, widespread flooding and landslides occurred in the Brazilian state of Rio Grande…
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      NASA-IBM Collaboration Develops INDUS Large Language Models for Advanced Science Research
      Named for the southern sky constellation, INDUS (stylized in all caps) is a comprehensive suite of large language models supporting five science domains. NASA By Derek Koehl
      Collaborations with private, non-federal partners through Space Act Agreements are a key component in the work done by NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT). A collaboration with International Business Machines (IBM) has produced INDUS, a comprehensive suite of large language models (LLMs) tailored for the domains of Earth science, biological and physical sciences, heliophysics, planetary sciences, and astrophysics and trained using curated scientific corpora drawn from diverse data sources.
      INDUS contains two types of models; encoders and sentence transformers. Encoders convert natural language text into numeric coding that can be processed by the LLM. The INDUS encoders were trained on a corpus of 60 billion tokens encompassing astrophysics, planetary science, Earth science, heliophysics, biological, and physical sciences data. Its custom tokenizer developed by the IMPACT-IBM collaborative team improves on generic tokenizers by recognizing scientific terms like biomarkers and phosphorylated. Over half of the 50,000-word vocabulary contained in INDUS is unique to the specific scientific domains used for its training. The INDUS encoder models were used to fine tune the sentence transformer models on approximately 268 million text pairs, including titles/abstracts and questions/answers.
      By providing INDUS with domain-specific vocabulary, the IMPACT-IBM team achieved superior performance over open, non-domain specific LLMs on a benchmark for biomedical tasks, a scientific question-answering benchmark, and Earth science entity recognition tests. By designing for diverse linguistic tasks and retrieval augmented generation, INDUS is able to process researcher questions, retrieve relevant documents, and generate answers to the questions. For latency sensitive applications, the team developed smaller, faster versions of both the encoder and sentence transformer models.
      Validation tests demonstrate that INDUS excels in retrieving relevant passages from the science corpora in response to a NASA-curated test set of about 400 questions. IBM researcher Bishwaranjan Bhattacharjee commented on the overall approach: “We achieved superior performance by not only having a custom vocabulary but also a large specialized corpus for training the encoder model and a good training strategy. For the smaller, faster versions, we used neural architecture search to obtain a model architecture and knowledge distillation to train it with supervision of the larger model.”
      NASA Chief Scientist Kate Calvin gives remarks in a NASA employee town hall on how the agency is using and developing Artificial Intelligence (AI) tools to advance missions and research, Wednesday, May 22, 2024, at the NASA Headquarters Mary W. Jackson Building in Washington. The INDUS suite of models will help facilitate the agency’s AI goals. NASA/Bill Ingalls INDUS was also evaluated using data from NASA’s Biological and Physical Sciences (BPS) Division. Dr. Sylvain Costes, the NASA BPS project manager for Open Science, discussed the benefits of incorporating INDUS: “Integrating INDUS with the Open Science Data Repository  (OSDR) Application Programming Interface (API) enabled us to develop and trial a chatbot that offers more intuitive search capabilities for navigating individual datasets. We are currently exploring ways to improve OSDR’s internal curation data system by leveraging INDUS to enhance our curation team’s productivity and reduce the manual effort required daily.”
      At the NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC), the INDUS model was fine-tuned using labeled data from domain experts to categorize publications specifically citing GES-DISC data into applied research areas. According to NASA principal data scientist Dr. Armin Mehrabian, this fine-tuning “significantly improves the identification and retrieval of publications that reference GES-DISC datasets, which aims to improve the user journey in finding their required datasets.” Furthermore, the INDUS encoder models are integrated into the GES-DISC knowledge graph, supporting a variety of other projects, including the dataset recommendation system and GES-DISC GraphRAG.
      Kaylin Bugbee, team lead of NASA’s Science Discovery Engine (SDE), spoke to the benefit INDUS offers to existing applications: “Large language models are rapidly changing the search experience. The Science Discovery Engine, a unified, insightful search interface for all of NASA’s open science data and information, has prototyped integrating INDUS into its search engine. Initial results have shown that INDUS improved the accuracy and relevancy of the returned results.”
      INDUS enhances scientific research by providing researchers with improved access to vast amounts of specialized knowledge. INDUS can understand complex scientific concepts and reveal new research directions based on existing data. It also enables researchers to extract relevant information from a wide array of sources, improving efficiency. Aligned with NASA and IBM’s commitment to open and transparent artificial intelligence, the INDUS models are openly available on Hugging Face. For the benefit of the scientific community, the team has released the developed models and will release the benchmark datasets that span named entity recognition for climate change, extractive QA for Earth science, and information retrieval for multiple domains. The INDUS encoder models are adaptable for science domain applications, and the INDUS retriever models support information retrieval in RAG applications.
      A paper on INDUS, “INDUS: Effective and Efficient Language Models for Scientific Applications,” is available on arxiv.org.
      Learn more about the Science Discovery Engine here.
      Share








      Details
      Last Updated Jun 24, 2024 Related Terms
      Open Science Explore More
      4 min read Marshall Research Scientist Enables Large-Scale Open Science


      Article


      5 days ago
      2 min read NASA’s Repository Supports Research of Commercial Astronaut Health  


      Article


      2 weeks ago
      4 min read NASA, IBM Research to Release New AI Model for Weather, Climate


      Article


      1 month ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...