Members Can Post Anonymously On This Site
NASA’s ECOSTRESS Maps Burn Risk Across Phoenix Streets
-
Similar Topics
-
By Space Force
In response to the new CDC regulation, the department has updated the Joint Travel Regulations to accommodate service members transporting a dog during a PCS move from a high-risk country.
View the full article
-
By European Space Agency
ESA is taking a significant step towards creating a more digitally inclusive Europe through a new partnership that will bring internet access to the hardest-to-reach areas. Reliable connectivity has become essential in today's digital age, yet for many Europeans in rural villages, mountainous regions, and small islands, dependable internet access remains out of reach.
View the full article
-
By European Space Agency
This compilation of images, captured by the Copernicus Sentinel-2 mission, showcases the characteristic hues of autumn in different European countries.
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Sols 4336-4337: Where the Streets Have No Name
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on Sol 4329 — Martian day 4,329 of the Mars Science Laboratory mission — on Oct. 10, 2024 at 04:19:55 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Oct. 16, 2024
Curiosity continues to drive along the western edge of the upper Gediz Vallis channel. After exiting the channel a few weeks ago, we turned north to image the “back side” of the deposits that we investigated on the eastern side before the channel crossing. As a member of the Channel Surfers working group, we believe that acquiring these views will help further our understanding of the geometry, nature, and evolution of these landforms. The bumpy terrain in front of us, however, plays a role in determining our route and length of drive. The rover planners on the team always do a fantastic job in charting the course on this once-in-a-lifetime road trip. I like to imagine Curiosity with the windows down, blaring U2, as she steadily blazes a new path across the sulfate unit.
With an eye towards imaging in this two-sol plan, Mastcam crafted a large mosaic of “Fascination Turret” that rises above the channel floor. ChemCam fit an unprecedented number of long distance RMI images in the plan that will document the upper extent of the white stone deposit, the nature of the “Kukenan” mound, and characterize the rocks in Fascination Turret at targets named “Chimney Tree” and “Forgotten Canyon.” In our immediate workspace, ChemCam used the Laser Induced Breakdown Spectroscopy (LIBS) instrument on a laminated (very thinly bedded) bedrock in the workspace at “Puppet Lake” to determine its chemical composition, which will be documented with a coordinating Mastcam image. MAHLI and AXPS teamed up to analyze a cluster of small gray rocks in front of us at “Jumble Lake.”
The second sol includes a 25-meter (about 82 feet) drive to the west/northwest as we continue along our path adjacent to the channel. The Environmental theme group included a range of activities such as a Mastcam tau that will measure the optical depth of the atmosphere and constrain aerosol scattering properties, dust devil movies, and a suprahorizon movie to monitor clouds.
Written by Sharon Wilson Purdy, Planetary Geologist at the Smithsonian National Air and Space Museum
Image Download Share
Details
Last Updated Oct 18, 2024 Related Terms
Blogs Explore More
2 min read Just Keep Roving
Throughout the past week, Perseverance has continued marching up the Jezero crater rim. This steep…
Article
11 hours ago
3 min read Sols 4334-4335: Planning with Popsicles — A Clipper Celebration!
Article
2 days ago
4 min read Sols 4331-4333: Today’s Rover ABC – Aurora, Backwards Driving, and Chemistry, with a Side of Images
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
3 min read
NASA Develops Process to Create Very Accurate Eclipse Maps
New NASA research reveals a process to generate extremely accurate eclipse maps, which plot the predicted path of the Moon’s shadow as it crosses the face of Earth. Traditionally, eclipse calculations assume that all observers are at sea level on Earth and that the Moon is a smooth sphere that is perfectly symmetrical around its center of mass. As such, these calculations do not take into account different elevations on Earth or the Moon’s cratered, uneven surface.
For slightly more accurate maps, people can employ elevation tables and plots of the lunar limb — the edge of the visible surface of the Moon as seen from Earth. However, now eclipse calculations have gained even greater accuracy by incorporating lunar topography data from NASA’s LRO (Lunar Reconnaissance Orbiter) observations.
Using LRO elevation maps, NASA visualizer Ernie Wright at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, created a continuously varying lunar limb profile as the Moon’s shadow passes over the Earth. The mountains and valleys along the edge of the Moon’s disk affect the timing and duration of totality by several seconds. Wright also used several NASA data sets to provide an elevation map of Earth so that eclipse observer locations were depicted at their true altitude.
The resulting visualizations show something never seen before: the true, time-varying shape of the Moon’s shadow, with the effects of both an accurate lunar limb and the Earth’s terrain.
“Beginning with the 2017 total solar eclipse, we’ve been publishing maps and movies of eclipses that show the true shape of the Moon’s central shadow — the umbra,” said Wright.
A map showing the umbra (the Moon’s central shadow) as it passes over Cleveland at 3:15 p.m. local time during the April 8, 2024, total solar eclipse. NASA SVS/Ernie Wright and Michaela Garrison “And people ask, why does it look like a potato instead of a smooth oval? The short answer is that the Moon isn’t a perfectly smooth sphere.”
The mountains and valleys around the edge of the Moon change the shape of the shadow. The valleys are also responsible for Baily’s beads and the diamond ring, the last bits of the Sun visible just before and the first just after totality.
A computer simulation of Baily’s beads during a total solar eclipse. Data from Lunar Reconnaissance Orbiter makes it possible to map the lunar valleys that create the bead effect. NASA SVS/Ernie Wright Wright is lead author of a paper published September 19 in The Astronomical Journal that reveals for the first time exactly how the Moon’s terrain creates the umbra shape. The valleys on the edge of the Moon act like pinholes projecting images of the Sun onto the Earth’s surface.
A visualization of Sun images being projected from lunar valleys that are acting like pinhole projectors. Light rays from the Sun converge on each valley, then spread out again on their way to the Earth. NASA SVS/Ernie Wright The umbra is the small hole in the middle of these projected Sun images, the place where none of the Sun images reach.
Viewed from behind the Moon, the Sun images projected by lunar valleys on the Moon’s edge fall on the Earth’s surface in a flower-like pattern with a hole in the middle, forming the umbra shape. NASA SVS/Ernie Wright The edges of the umbra are made up of small arcs from the edges of the projected Sun images.
This is just one of several surprising results that have emerged from the new eclipse mapping method described in the paper. Unlike the traditional method invented 200 years ago, the new way renders eclipse maps one pixel at a time, the same way 3D animation software creates images. It’s also similar to the way other complex phenomena, like weather, are modeled in the computer by breaking the problem into millions of tiny pieces, something computers are really good at, and something that was inconceivable 200 years ago.
For more about eclipses, refer to:
https://science.nasa.gov/eclipses
By Ernie Wright and Susannah Darling
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Nancy Neal-Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-0039
nancy.n.jones@nasa.gov
Share
Details
Last Updated Sep 19, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms
Lunar Reconnaissance Orbiter (LRO) Solar Eclipses Uncategorized Explore More
3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night
Article
3 weeks ago
14 min read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece
Article
4 weeks ago
4 min read Into The Field With NASA: Valley Of Ten Thousand Smokes
To better understand Mars, NASA’s Goddard Instrument Field Team hiked deep into the backcountry of…
Article
4 weeks ago
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.