Jump to content

What’s Up: July 2024 Skywatching Tips from NASA


NASA

Recommended Posts

  • Publishers

What to Look for in July

The scorpion’s star clusters, and Mars reveals elusive Uranus

Follow the tail of Scorpius to locate star clusters M6 and M7, let Mars guide you to observe planet Uranus, and see the Moon gather a group of planets in the morning.

Highlights

  • All month – Two easy-to-spot star clusters – M7, aka Ptolemy’s Cluster, and M6, the Butterfly Cluster – are both located about 5 degrees east of the the bright stars that mark the “stinger” end of the scorpion’s tail. They reach their highest point in the sky around 10 or 11 pm local time. 
  • July 2 & 3 – The crescent Moon will join Jupiter and Mars in the east before sunrise. Looking for them before the sky starts to brighten, you’ll also find the Pleiades star cluster above Jupiter, and bright stars Capella and Aldebaran nearby.
  • July 5 – New moon
  • July 7 & 8 – Those with an unobstructed view of the western horizon can spot Mercury shining brightly, low in the sky with a slim crescent Moon. Look for them starting 30 to 45 minutes after the Sun sets.
  • July 13 – For the first few hours after dark, look to the southwest to find the first-quarter Moon snuggled up to bright bluish-white star Spica. For much of the lower 48 U.S. and most of Mexico, the Moon will appear to pass in front of Spica – an event called an occultation. Check your favorite skywatching app for the view from your location.
  • July 14-16 – Grab your binoculars and have a look at Mars in the early morning before the sky starts to brighten, and you’ll find the distant planet Uranus quite close by.
  • July 21 – Full moon
  • July 30 – Look for a close gathering of Jupiter, Mars, and the Moon with the bright stars of the constellation Taurus in the a.m. sky before dawn.
An illustrated sky chart shows a zoomed-in view, like what binoculars would reveal. The planets Mars and Uranus are pictured as small white dots among a handful of stars, with Uranus located at the 10 o'clock position above Mars. Mars is a reddish-colored dot that appears larger than Uranus, due to the former's greater brightness.
Sky chart showing the position of Uranus relative to Mars on July 15.
NASA/JPL-Caltech

Transcript

What’s Up for July? The Moon gets the band back together, find planet Uranus with some help from Mars, and the star clusters that feel the Scorpion’s sting.

All month in July, as in June, the planetary action is in the a.m. sky. Find Saturn rising around midnight, and climbing high into the south by sunrise. Mars rises a couple of hours later, with Jupiter trailing behind it, and shifting higher in the sky each day.

On July 2nd and 3rd before sunrise, the crescent Moon will join Jupiter and Mars in the east. Looking for them before the sky starts to brighten, you’ll also find the Pleiades star cluster above Jupiter, as well as bright stars Capella and Aldebaran.

As the Moon swings around the planet in its orbit, this same group gets back together at the end of the month, but as a much tighter gathering of Jupiter, Mars, and the Moon with the bright stars of the constellation Taurus.

An illustrated sky chart shows the morning sky facing eastward, 1 hour before sunrise on July 30, 2024. The crescent Moon at center, surrounded by several bright stars and planets. Jupiter and Mars are pictured as small white dots, with Jupiter directly below the Moon, and Mars directly right of the Moon. Jupiter appears larger than Mars, indicating its greater brightness.
Sky chart showing the pre-dawn sky on July 30, with Jupiter, Mars, and the crescent Moon, plus several bright stars in the constellation Taurus.
NASA/JPL-Caltech

Then on the evening of July 7th and 8th, those with an unobstructed view of the western horizon can spot Mercury shining brightly, low in the sky with a slim crescent Moon. Look for them starting 30 to 45 minutes after the Sun sets. Observers in the Southern Hemisphere will find Mercury a good bit higher in the northwest sky all month after sunset.

On July 13, for the first few hours after dark, look to the southwest to find the first quarter Moon snuggled up to bright bluish-white star Spica. For much of the lower 48 United States and most of Mexico, the Moon will appear to pass in front of Spica – an event called an occultation.

Next, over three days in mid-July, grab your binoculars and have a look at Mars in the early morning before the sky starts to brighten, and you’ll find the distant planet Uranus quite close by. Uranus is not too difficult to see with binoculars or a small telescope anytime it’s reasonably high above the horizon at night, but you really need to know where to look for it, or use an auto-guided telescope. But occasionally the Moon or one of the brighter planets will pass close to Uranus in the sky, making for a great opportunity to find it with ease.

An illustrated sky chart shows the stars in Scorpius linked by lines to form the scorpion shape of the constellation. Bright star Antares is labeled in the upper part of the constellation. M6 and M7 are indicated by circled inscribed around their positions on the sky.
This sky chart shows the evening sky in July, with constellation Scorpius low in the south. The locations of star clusters M6 and M7 are indicated near the mythical scorpion’s tail.
NASA/JPL-Caltech

The winding form of constellation Scorpius, adorned with the bright red star Antares, is a feature of the night sky around the world this time of year. And at the tip of the scorpion’s tail are two well-known star clusters that are well placed for viewing at this time of year.

M7, aka Ptolemy’s Cluster, and M6, the Butterfly Cluster, are both located about 5 degrees east of the the bright stars that mark the “stinger” end of the scorpion’s tail. They reach their highest point in the sky around 10 or 11 pm local time.

To find M7, imagine a line toward the east through the “stinger stars,” Lesath and Shaula, and it will lead you straight to the star cluster. M6 is just a couple of degrees above M7. Both are “open star clusters,” meaning they’re loose groupings of stars that formed together, in the same region of space, and they’re only loosely bound together by gravity, so they’ll eventually go their separate ways.

skychart-m6-m7-location-july-2024.jpg?w=
 Zoomed sky chart showing where M7 and M6 are located relative to the bright stars that form the stinger of the scorpion constellation. Both are 5-6 degrees west of Shoala and Lesath, with M6 being placed about 5 degrees above, or north of, M7.
NASA/JPL-Caltech

M7 is just visible to the unaided eye under dark skies as a hazy patch just left of the tip of the scorpion’s tail. But it’s best seen with binoculars or a telescope with a wide field of view. Its stars are located at a distance of about 1000 light years from us, and they formed about 200 million years ago. The cluster was discovered by Greek-Roman astronomer Ptolemy in the year 130, hence its other name.

M6 is about half the apparent size of M7, and contains fewer stars. It’s also a bit farther away from us, at around 1600 light years. It’s estimated to be about half as old as M7, at an age of around 100 million years. It was discovered by Italian astronomer and contemporary of Galileo, Giovanni Battista Hodierna, in 1654.

These two clusters are easy to observe in July, and their location in Scorpius makes them pretty straightforward to locate on a clear night.

So there’s no reason to fear of this scorpion’s sting. Instead, let it guide you to two distant star clusters, and see for yourself two little families of stars in the process of spreading out into the Milky Way.

Here are the phases of the Moon for July.

moonphases-july2024.jpg?w=1920
The phases of the Moon for July 2024.
NASA/JPL-Caltech

Stay up to date on NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.

Skywatching Resources

About the ‘What’s Up’ Production Team

“What’s Up” is NASA’s longest running web video series. It had its first episode in April 2007 with original host Jane Houston Jones. Today, Preston Dyches, Christopher Harris, and Lisa Poje are the space enthusiasts who produce this monthly video series at NASA’s Jet Propulsion Laboratory. Additional astronomy subject matter guidance is provided by JPL’s Bill Dunford, Gary Spiers, Lyle Tavernier, and the Night Sky Network’s Kat Troche.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has awarded Bastion Technologies Inc., of Houston, the Center Occupational Safety, Health, Medical, System Safety and Mission Assurance Contract (COSMC) at the agency’s Ames Research Center in California’s Silicon Valley.
      The COSMC contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract, with an indefinite-delivery/indefinite-quantity component and maximum potential value of $53 million. The contract phase-in begins Thursday, Jan. 2, 2025, followed by a one-year base period that begins Feb. 14, 2025, and options to extend performance through Aug. 13, 2030.
      Under this contract, the company will provide support for occupational safety, industrial hygiene, health physics, safety and health training, emergency response, safety culture, medical, wellness, fitness, and employee assistance. The contractor also will provide subject matter expertise in several areas including system safety, software safety and assurance, quality assurance, pressure system safety, procurement quality assurance, and range safety. Work will primarily be performed at NASA Ames and NASA’s Armstrong Flight Research Center in Edwards, California, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      NASA Headquarters, Washington
      202-358-1600
      tiernan.p.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By NASA
      NASA Deputy Administrator Pam Melroy speaks during an agency town hall on Sept. 21, 2021 at NASA Headquarters in Washington. Credit: NASA/Aubrey Gemignani NASA Deputy Administrator Pam Melroy and Nicola Fox, associate administrator for NASA’s Science Mission Directorate, will travel to Mexico City on Sunday, Nov. 24, for a multi-day trip to build on previous engagements and advance scientific and technological collaboration between the United States and Mexico.
      This visit will focus on fostering partnerships in astronomy and astrophysics research, as well as highlighting opportunities for economic, educational, and science, technology, engineering, and math collaborations between the two nations.
      Melroy’s trip will include high-level meetings with senior Mexican government officials, including the secretariat-designate for Science, Technology, Humanities, and Innovation. Melroy and Fox also will meet with leaders from academia, industry, and scientific institutions. These discussions will emphasize expanding cooperation in space science, with particular focus on Mexico’s growing astronomy programs.
      This visit builds on Melroy’s trip to Mexico City earlier this year and reflects NASA’s commitment to advancing international cooperation in space and science for the benefit of all.
      For more information about NASA’s international partnerships, visit:
      https://www.nasa.gov/oiir
      -end-
      Amber Jacobson / Katherine Rohloff
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / katherine.a.rohloff@nasa.gov
      Share
      Details
      Last Updated Nov 22, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Science Mission Directorate Office of International and Interagency Relations (OIIR) View the full article
    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By NASA
      2 Min Read Why NASA Is a Great Place to Launch Your Career 
      Students at NASA's Jet Propulsion Laboratory pose for photos around the laboratory wearing their eclipse glasses. Credits: NASA/JPL-Caltech  Recently recognized as the most prestigious internship program by Vault.com, NASA has empowered countless students and early-career professionals to launch careers in science, technology, engineering, and mathematics (STEM) fields. NASA interns make real contributions to space and science missions, making it one of the best places to start your career. 
      “NASA internships give students the chance to work on groundbreaking projects alongside experts, providing impactful opportunities for professional growth,” said Mike Kincaid, associate administrator for NASA’s Office of STEM Engagement. “Since starting my career as an intern at NASA’s Johnson Space Center in Houston, I’ve experienced firsthand how NASA creates lasting connections and open doors—not just for me, but for former interns who are now colleagues across the agency. These internships build STEM skills, confidence, and networks, preparing the next generation of innovators and leaders.” 
      NASA interns achieve impressive feats, from discovering new exoplanets to becoming astronauts and even winning Webby Awards for their science communication efforts. These valuable contributors play a crucial role in NASA’s mission to explore the unknown for the benefit of all. Many NASA employees start their careers as interns, a testament to the program’s lasting impact. 
      Students congratulate the 23rd astronaut class at NASA’s Johnson Space Center in Houston on March 5, 2024.NASA/Josh Valcarcel Additionally, NASA is recognized as one of America’s Best Employers for Women and one of America’s Best Employers for New Graduates by Forbes, reflecting the agency’s commitment to fostering a diverse and inclusive environment. NASA encourages people from underrepresented groups to apply, creating a diverse cohort of interns who bring a wide range of perspectives and ideas to the agency.  
      “My internship experience has been incredible. I have felt welcomed by everyone I’ve worked with, which has been so helpful as a Navajo woman as I’ve often felt like an outsider in male-dominated STEM spaces,” said Tara Roanhorse, an intern for NASA’s Office of STEM Engagement. 
      If you’re passionate about space, technology, and making a difference in the world, NASA’s internship program is the perfect place to begin your journey toward a fulfilling and impactful career.  
      To learn more about NASA’s internship programs, visit: https://www.intern.nasa.gov/ 
      Keep Exploring Discover More STEM Topics From NASA
      For Colleges and Universities
      For Students Grades 9-12
      Join Artemis
      Learning Resources
      View the full article
    • By NASA
      The future of human space exploration took a bold step forward at NASA’s Johnson Space Center in Houston on Nov. 15, 2024, as Texas A&M University leaders’ broke ground for the Texas A&M University Space Institute.

      Texas state officials, NASA leaders, and distinguished guests participated in the ceremony, held near the future development site of Johnson’s new Exploration Park, marking an important milestone in a transformative partnership to advance research, innovation, and human spaceflight.
      NASA’s Johnson Space Center Director Vanessa Wyche gives remarks at the Texas A&M University Space Institute groundbreaking ceremony in Houston on Nov. 15, 2024. NASA/Robert Markowitz “This groundbreaking is not just a physical act of breaking ground or planting a flag,” said Johnson Director Vanessa Wyche. “This is the moment our vision—to dare to expand frontiers and unite with our partners to explore for the benefit of all humanity—will be manifested.”

      The Texas A&M University Space Institute will be the first tenant at NASA’s 240-acre Exploration Park to support facilities that enhance commercial access, foster a collaborative development environment, and strengthen the United States’ competitiveness in the space and aerospace industries.
      Chairman Bill Mahomes Jr. of the Texas A&M University System Board of Regents, left, Chancellor John Sharp of the Texas A&M University System, and Johnson Director Vanessa Wyche hold a commemorative plaque celebrating the establishment of the Texas A&M University Space Institute at Exploration Park. NASA/Robert Markowitz Exploration Park aims to foster research, technology transfer, and a sustainable pipeline of career development for the Artemis Generation and Texas workers transitioning to the space economy. The park represents a key achievement of Johnson’s 2024 Dare | Unite | Explore commitments, emphasizing its role as the hub of human spaceflight, developing strategic partnerships, and paving the way for a thriving space economy.

      Research conducted at the Space Institute is expected to accelerate human spaceflight by providing opportunities for the brightest minds worldwide to address the challenges of living in low Earth orbit, on the Moon, and on Mars.
      Senior leadership from Johnson Space Center gathers for the groundbreaking ceremony of the Texas A&M University Space Institute. NASA/Robert Markowitz Industry leaders and Johnson executives stood alongside NASA’s Lunar Terrain Vehicle and Space Exploration Vehicle, symbolizing their commitment to fostering innovation and collaboration.

      Texas A&M University Space Institute director and retired NASA astronaut Dr. Nancy Currie-Gregg and Dr. Rob Ambrose, Space Institute associate director, served as the masters of ceremony for the event. Johnson leaders present included Deputy Director Stephen Koerner; Associate Director Donna Shafer; Associate Director for Vision and Strategy Douglas Terrier; Director of External Relations Office Arturo Sanchez; and Chief Technologist and Director of the Business Development and Technology Integration Office Nick Skytland.

      Also in attendance were Texas State Rep. Greg Bonnen; Texas A&M University System Board of Regents Chairman William Mahomes Jr.; Texas A&M University System Chancellor John Sharp; Texas A&M University President and Retired Air Force Gen. Mark Welsh III; and Texas A&M Engineering Vice Chancellor and Dean Robert Bishop.
      Texas A&M University Space Institute Director and retired NASA astronaut Nancy Currie-Gregg plants a Texas A&M University Space Institute flag at Johnson Space Center, symbolizing the partnership between the institute and NASA.NASA/Robert Markowitz The institute, expected to open in September 2026, will feature the world’s largest indoor simulation spaces for lunar and Martian surface operations, high-bay laboratories, and multifunctional project rooms.

      “The future of Texas’ legacy in aerospace is brighter than ever as the Texas A&M Space Institute in Exploration Park will create an unparalleled aerospace, economic, business development, research, and innovation region across the state,” Wyche said. “Humanity’s next giant leap starts here!”
      View the full article
  • Check out these Videos

×
×
  • Create New...