Members Can Post Anonymously On This Site
NASA’s Webb Captures Celestial Fireworks Around Forming Star
-
Similar Topics
-
By NASA
NASA Goddard MODIS Rapid Response Team During the morning of March 20, 2015, a total solar eclipse was visible from parts of Europe, and a partial solar eclipse from northern Africa and northern Asia. NASA’s Terra satellite passed over the Arctic Ocean on March 20 at 10:45 UTC (6:45 a.m. EDT) and captured the eclipse’s shadow over the clouds in the Arctic Ocean.
Terra launched 25 years ago on Dec. 18, 1999. Approximately the size of a small school bus, the Terra satellite carries five instruments that take coincident measurements of the Earth system: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth’s Radiant Energy System (CERES), Multi-angle Imaging Spectroradiometer (MISR), Measurements of Pollution in the Troposphere (MOPITT), and Moderate Resolution Imaging Spectroradiometer (MODIS).
On Nov. 28, 2024, one of Terra’s power-transmitting shunt units failed. A response team reviewed Terra’s status and discussed potential impacts and options. Consequently, the team placed ASTER into Safe Mode. As a result, ASTER data are not currently being collected. All other instruments continue uninterrupted.
Image Credit: NASA Goddard MODIS Rapid Response Team
View the full article
-
By NASA
Illustration of the main asteroid belt, orbiting the Sun between Mars and JupiterNASA NASA’s powerful James Webb Space Telescope includes asteroids on its list of objects studied and secrets revealed.
A team led by researchers at the Massachusetts Institute of Technology (MIT) in Cambridge repurposed Webb’s observations of a distant star to reveal a population of small asteroids — smaller than astronomers had ever detected orbiting the Sun in the main asteroid belt between Mars and Jupiter.
The 138 new asteroids range from the size of a bus to the size of a stadium — a size range in the main belt that has not been observable with ground-based telescopes. Knowing how many main belt asteroids are in different size ranges can tell us something about how asteroids have been changed over time by collisions. That process is related to how some of them have escaped the main belt over the solar system’s history, and even how meteorites end up on Earth.
“We now understand more about how small objects in the asteroid belt are formed and how many there could be,” said Tom Greene, an astrophysicist at NASA’s Ames Research Center in California’s Silicon Valley and co-author on the paper presenting the results. “Asteroids this size likely formed from collisions between larger ones in the main belt and are likely to drift towards the vicinity of Earth and the Sun.”
Insights from this research could inform the work of the Asteroid Threat Assessment Project at Ames. ATAP works across disciplines to support NASA’s Planetary Defense Coordination Office by studying what would happen in the case of an Earth impact and modeling the associated risks.
“It’s exciting that Webb’s capabilities can be used to glean insights into asteroids,” said Jessie Dotson, an astrophysicist at Ames and member of ATAP. “Understanding the sizes, numbers, and evolutionary history of smaller main belt asteroids provides important background about the near-Earth asteroids we study for planetary defense.”
Illustration of the James Webb Space TelescopeNASA The team that made the asteroid detections, led by research scientist Artem Burdanov and professor of planetary science Julien de Wit, both of MIT, developed a method to analyze existing Webb images for the presence of asteroids that may have been inadvertently “caught on film” as they passed in front of the telescope. Using the new image processing technique, they studied more than 10,000 images of the star TRAPPIST-1, originally taken to search for atmospheres around planets orbiting the star, in the search for life beyond Earth.
Asteroids shine more brightly in infrared light, the wavelength Webb is tuned to detect, than in visible light, helping reveal the population of main belt asteroids that had gone unnoticed until now. NASA will also take advantage of that infrared glow with an upcoming mission, the Near-Earth Object (NEO) Surveyor. NEO Surveyor is the first space telescope specifically designed to hunt for near-Earth asteroids and comets that may be potential hazards to Earth.
The paper presenting this research, “Detections of decameter main-belt asteroids with JWST,” was published Dec. 9 in Nature.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
For news media:
Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
View the full article
-
By European Space Agency
Image: With the festive season approaching, even Earth-observing satellites are getting into the spirit, capturing a stunning compilation of European cities that resemble stars. View the full article
-
By NASA
ESA/Webb, NASA & CSA, P. Zeidler This new image of star cluster NGC 602, released on Dec. 17, 2024, combines data from NASA’s Chandra X-ray Observatory with a previously released image from the agency’s James Webb Space Telescope. Webb data provide the ring-like outline of the “wreath,” while X-rays from Chandra (red) show young, massive stars that are illuminating the wreath, sending high-energy light into interstellar space.
NGC 602 lies on the outskirts of the Small Magellanic Cloud, which is one of the closest galaxies to the Milky Way, about 200,000 light-years from Earth.
See another new, festive image: the “Christmas tree cluster.”
Image credit: X-ray: NASA/CXC; Infrared: ESA/Webb, NASA & CSA, P. Zeilder, E.Sabbi, A. Nota, M. Zamani; Image Processing: NASA/CXC/SAO/L. Frattare and K. Arcand
View the full article
-
By European Space Agency
Our understanding of planet formation in the Universe’s early days is challenged by new data from the NASA/ESA/CSA James Webb Space Telescope. Webb solved a puzzle by proving a controversial finding made with the NASA/ESA Hubble Space Telescope more than 20 years ago.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.