Jump to content

NASA Shares Use Requirements with Commercial Destination Partners


NASA

Recommended Posts

  • Publishers
A male astronaut is looking into a glass glovebox as he works on a science experiment. Inside the glovebox there is various scientific equipment including several syringes and bags. The astronaut is holding two syringes inside the glovebox.
NASA astronaut Mike Barratt processes brain organoid samples inside the life science glovebox for a neurodegenerative disorder study. NASA plans to use future commercial low Earth orbit destinations for the continuation of scientific research.
NASA

NASA hosted a meeting to share knowledge with companies developing future commercial destinations at the agency’s Johnson Space Center in Houston. The discussion could aid in developing safe, reliable, innovative, and cost-effective space stations. Industry representatives from more than 20 companies attended.

The program focused on NASA’s planned use of commercial destinations, draft utilization requirements, and the payload life cycle. A primary interest for the use of commercial stations includes the continuation of scientific research in low Earth orbit, such as human research, technology demonstrations, biological and physical science, and Earth observation.

A man wearing a gray blazer stands at a podium with the NASA meatball logo attached to the front. The man is gesturing with his hands as he speaks to an audience.
David Caponio from Vast Space presents a five-minute lightning talk on the company’s capabilities during the program NASA’s Johnson Space Center. Vast is working with NASA under the second Collaborations for Commercial Space Capabilities initiative for technologies and operations required for its microgravity and artificial gravity stations, including the Haven-1 commercial destination.
NASA/Josh Valcarcel

“NASA has benefited from the unique microgravity environment of low Earth orbit to conduct important science investigations and technology demonstrations for more than two decades,” said Dr. Kirt Costello, utilization manager for NASA’s Commercial Low Earth Orbit Development Program. “As commercial companies make progress in the design and development of their own space stations, it is important that we share NASA’s needs and requirements as well as foster an open dialogue between government and private industry.”

The program builds on a request for information released last year, seeking feedback from industry as the agency refines its requirements for new commercial space destinations.

A group of four people are speaking to each other. There are three men and a woman. The man in the center is wearing a blue button-down shirt with a gray blazer and glasses and smiling at the other people.
Vergel Romero of Sierra Space speaks with representatives from other commercial companies during a networking opportunity. Sierra Space is working with Blue Origin on the development of Orbital Reef, and also holds an unfunded Space Act Agreement with NASA for the development of its commercial low Earth orbit ecosystem.
NASA/Josh Valcarcel

Since then, the feedback has helped develop and refine a utilization requirements strategy, including a concept of operations, basic laboratory capabilities, and common payload standards for heritage hardware. NASA will continue to refine its future requirements and incorporate future low Earth orbit needs of other U.S. government agencies and international partners.

NASA uses a two-phase strategy to support the development of commercial destinations and enable the agency to purchase services as one of many customers. Phase 1 efforts extend through 2025, before NASA plans to transition to Phase 2, which will be to certify commercial destinations and purchase services.   

A woman wearing a pink blouse and a black blazer stands at a podium with the NASA meatball logo attached to the front. The woman is speaking to a group of people.
Eleasa Kim, payload operations lead for NASA’s Commercial Low Earth Orbit Development Program, presents on NASA’s planned utilization activities for commercial destinations and expectations for provider support.
NASA/Josh Valcarcel

The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

Learn more about NASA’s commercial space strategy at:

https://www.nasa.gov/humans-in-space/commercial-space/

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Live Video from the International Space Station (Official NASA Stream)
    • By NASA
      The NASA Breath Diagnostics challenge tasks solvers to leverage their expertise to develop a classification model that can accurately discriminate between the breath of COVID-positive and COVID-negative individuals, using existing data. The ultimate goal is to improve the accuracy of the NASA E-Nose device as a potential clinical tool that would provide diagnostic results based on the molecular composition of human breath.
      Award: $55,000 in total prizes
      Open Date: July 5, 2024
      Close Date: September 6, 2024
      For more information, visit: https://bitgrit.net/competition/22
      View the full article
    • By NASA
      1 min read
      NASA Science Activation Teams Present at National Rural STEM Summit
      NASA Science Activation (SciAct) teams participated in the National Rural STEM (Science, Technology, Engineering, & Mathematics) Summit held June 4-7, 2024 in Tucson, Arizona. Hosted by Kalman Mannis of the Rural Activation and Innovation Network (Arizona Science Center) and the SciTech Institute, the summit fostered learning and sharing among organizations dedicated to creating partnerships and pathways for authentic STEM learning in rural communities.
      Participants included:
      Matt Cass and Randi Neff from SciAct’s Smoky Mountains STEM Collaborative, who presented “A sense of place: Crafting authentic experiences for rural STEM learners”; Tina Harte from NASA (Science Systems and Applications, Inc), who presented “Nature explorations with NASA”; Kalman Mannis from the SciAct STEM Ecosystems project and the Rural Activation and Innovation Network, who presented “Building leaders in STEM through coaching, connections, and camaraderie”; and members of the SciAct Rural Committee. SciAct STEM Ecosystems is supported by NASA under cooperative agreement award number 80NSSC210007 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Randi Neff of the NASA SciAct-funded Smoky Mountains STEM Collaborative presents at the National Rural STEM Learning Summit. Arizona Science Center Share








      Details
      Last Updated Jul 05, 2024 Editor NASA Science Editorial Team Related Terms
      Astrophysics Biological & Physical Sciences Earth Science Heliophysics Planetary Science Science Activation Science-enabling Technology Explore More
      4 min read NASA’s Webb Captures Celestial Fireworks Around Forming Star


      Article


      3 days ago
      9 min read Behind the Scenes of a NASA ‘Moonwalk’ in the Arizona Desert


      Article


      4 days ago
      3 min read NASA Selects 5 Proposals to Conduct Research Using Openly Available Data in the Physical Sciences Informatics System


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Firefly Aerospace’s Alpha rocket leaves a glowing trail above the skies of Vandenberg Space Force Base in California on July 3, 2024. Firefly Aerospace/Trevor Mahlmann As part of NASA’s CubeSat Launch Initiative, Firefly Aerospace launched eight small satellites on July 3 aboard the company’s Alpha rocket. Named “Noise of Summer,” the rocket successfully lifted off from Space Launch Complex 2 at Vandenberg Air Force Base in California at 9:04 p.m. PDT.
      The CubeSat missions were designed by universities and NASA centers and cover science that includes climate studies, satellite technology development, and educational outreach to students.
      Firefly Aerospace completed its Venture-Class Launch Services Demonstration 2 contract with this launch. The agency’s venture-class contracts offer launch opportunities for new providers, helping grow the commercial launch industry and leading to cost-effective competition for future NASA missions.
      NASA’s CubeSat Launch Initiative provides a low-cost way for universities, non-profits, science centers, and other researchers to conduct science and technology demonstrations in space.
      Image Credit: Firefly Aerospace/Trevor Mahlmann
      View the full article
    • By NASA
      9 Min Read Behind the Scenes of a NASA ‘Moonwalk’ in the Arizona Desert
      NASA astronauts Kate Rubins (left) and Andre Douglas. Credits:
      NASA/Josh Valcarcel  NASA astronauts Kate Rubins and Andre Douglas recently performed four moonwalk simulations to help NASA prepare for its Artemis III mission. Due to launch in September 2026, Artemis III will land two, yet-to-be-selected, astronauts at the Moon’s South Pole for the first time.
      Traveling to space requires immense preparation, not just for the astronauts, but for the hundreds of people who work in the background. That’s why Earth-based simulations are key. They allow spacesuit and tool designers to see their designs in action. Flight controllers who monitor spacecraft systems and the crew’s activities get to practice catching early signs of technical issues or threats to astronaut safety. And scientists use simulations to practice making geologic observations from afar through descriptions from astronauts.
      Between May 13 and May 22, 2024, Rubins and Douglas trudged through northern Arizona’s San Francisco Volcanic Field, a geologically Moon-like destination shaped by millions of years of volcanic eruptions. There, they made observations of the soil and rocks around them and collected samples. After the moonwalks, the astronauts tested technology that could be used on Artemis missions, including a heads-up display that uses augmented reality to help with navigation, and lighting beacons that could help guide a crew back to a lunar lander.
      Dozens of engineers and scientists came along with Rubins and Douglas. Some were in the field alongside the crew. Others joined remotely from a mock mission control center at NASA’s Johnson Space Center in Houston in a more realistic imitation of what it’ll take to work with a crew that’s some 240,000 miles away on the lunar surface.  
      Here’s a look behind the scenes of a “moonwalk.”
      My experience in Arizona was incredible! I worked with several teams, explored an exotic landscape, and got a taste of what it’s like to be on a mission with a crew. 
      Andre Douglas
      NASA Astronaut
      Practice to Prepare
      In this May 13, 2024, photo, Rubins (left), a molecular biologist who has done several expeditions to the space station, and Douglas, an engineer and member of the 2021 astronaut class, prepared for moonwalk rehearsals.  
      During the May 14 moonwalk, above, Rubins and Douglas worked to stay in the simulation mindset while a cow looked on. They wore backpacks loaded with equipment for lighting, communication, cameras, and power for those devices.
      There are, of course, no cows on the Moon. But there is a region, called Marius Hills, that geologically resembles this Arizona volcanic field. Like the Arizona site, Marius Hills was shaped by ancient volcanic eruptions, so the composition of rocks at the two locations is similar.
      The Arizona simulation site also resembles the Moon’s south polar region in the subtle changes in the size, abundance, and groupings of rocks that can be found there. Noting such faint differences in rocks on the Moon will help reveal the history of asteroid collisions, volcanic activity, and other events that shaped not only the Moon, but also Earth and the rest of our solar system.
      “So this ‘landing site’ was a good analog for the types of small changes in regolith astronauts will look for at the lunar South Pole,” said Lauren Edgar, a geologist at the U.S. Geological Survey in Flagstaff, Ariz., who co-led the science team for the simulation.
      To the delight of Edgar and her colleagues, Rubins and Douglas correctly identified faint differences in the Arizona rocks. But, despite their accomplishment, the day’s moonwalk had to be cut short due to strong winds. As with cows, there’s no wind on the mostly airless Moon. 
      Science at the Table
      Earth and planetary scientists at NASA Johnson followed the moonwalks via a live video and audio feed broadcast in the Science Evaluation Room, pictured above. These experts developed detailed plans for each simulated moonwalk and provided geology expertise to mission control.
      Everyone in the room had a role. One person communicated information between the science team and the flight control team. Others monitored the crew’s science tasks to ensure the astronauts stayed on track.
      A small group analyzed images of rocks, soil, and outcrops sent back by the crew on the ground in Arizona. The information they gleaned helped determine whether the crew’s science tasks for each traverse needed to change.
      The decision to update tasks or not was made by a small group of experts from NASA and other institutions. Known as the “scrum,” this group of scientists, who are sitting around the table in the picture above, represented disciplines such as volcanology and mineralogy.
      They evaluated the information coming in from the crew and analyses from the science team to quickly decide whether to change the day’s science tasks because of an unplanned discovery. Serving at the scrum table was a high-pressure job, as updating the plan to spend more time at one intriguing site, for instance, could mean giving up time at another.
      The Arizona moonwalks also gave scientists an opportunity to test their skills at making geologic maps using data from spacecraft orbiting many miles above the surface. Such maps will identify scientifically valuable rocks and landforms at the South Pole to help NASA pick South Pole landing sites that have the most scientific value.
      Scientists will use data from NASA’s Lunar Reconnaissance Orbiter to map the geology around the Artemis III landing site on the Moon. But to map the Arizona volcanic field, they relied on Earth satellite data. Then, to test whether their Arizona maps were accurate, a couple of scientists compared the crew’s locations along their traverses — self-reported based on the land features around them — to the geologic features identified on the maps.
      Apollo 17 astronauts Eugene A. Cernan, wearing a green and yellow cap, and Harrison “Jack” Schmitt, during geology training at Cinder Lake Crater Field in Flagstaff, Ariz. In this 1972 image the NASA astronauts are driving a geologic rover, or “Grover,” which was a training replica of the roving vehicle they later drove on the Moon. In the months leading up to the Arizona moonwalks, scientists taught Rubin and Douglas about geology, a discipline that’s key to deciphering the history of planets and moons. Geology training has been commonplace since the Apollo era of the 1960s and early ’70s. In fact, Apollo astronauts also trained in Arizona. These pioneer explorers spent hundreds of hours in the classroom and in the field learning geology. Artemis astronauts will have similarly intensive training. 
      Operating in Moon-Like Conditions 
      In the image above, Douglas stands to Rubins’ left reviewing procedures, while Rubins surveys instruments on the cart. Both are wearing 70-pound mockup planetary spacesuits that make moving, kneeling and grasping difficult, similar to how it will feel to do these activities on the Moon.
      A NASA team member, not visible behind the cart in the foreground, is shining a spotlight toward the astronauts during a one-and-a-half-hour nighttime moonwalk simulation on May 16. The spotlight was used to imitate the lighting conditions of the Moon’s south polar region, where the Sun doesn’t rise and set as it does on Earth. Instead, it just moves across the horizon, skimming the surface like a flashlight lying on a table.
      This visualization shows the unusual motions of Earth and the Sun as viewed from the South Pole of the Moon. Credit: NASA/Ernie Wright The position of the Sun at the Moon has to do with the Moon’s 1.5-degree tilt on its axis. This slight tilt means neither of the Moon’s northern or southern hemispheres tips noticeably toward or away from the Sun throughout the year. In contrast, Earth’s 23.5-degree tilt allows the northern and southern hemispheres to lean closer (summer) or farther (winter) from the Sun depending on the time of year. Thus, the Sun appears higher in the sky during summer days than it does during winter days.
      Compared to the daytime moonwalks, when the astronauts could easily see and describe the conditions around them, the crew was relatively quiet during the night expedition. With their small helmet lights, Rubins and Douglas could see just the area around their feet. But the duo tested supplemental portable lights and reported a big improvement in visibility of up to 20 feet around themselves.
      Night simulations show us how tough it is for the astronauts to navigate in the dark. It’s pretty eye opening.
      Cherie achilles
      Mineralogist from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who co-led the simulation science team.
      The Science Evaluation Room during the nighttime moonwalk simulation on May 16. Scientists sit at their workstations while a screen at the front of the room presents live video and audio of the astronauts in the field.
      Engineers pictured above, in Houston’s mock mission control area, tested custom-designed software for managing moonwalks. One program automatically catalogs hours of audio and video footage, plus hundreds of pictures, collected during moonwalks. Another helps the team plan moonwalks, keep track of time and tasks, and manage limited life-support supplies such as oxygen. Such tracking and archiving will provide contextual data for generations of scientists and engineers. 
        
      It’s important that we make software tools that allow flight controllers and scientists to have flexibility and creativity during moonwalks, while helping keep the crew safe.
      Ben Feist
      Software engineer in NASA Johnson’s Astromaterials Research and Exploration Science division, pointing in the image above.
      Learning a Common Language 
      The audio stream used by the Houston team to communicate during spacewalks is a dizzying cacophony of voices representing all the engineering and science roles of mission control. A well-trained mission control specialist can block out the noise and focus only on information they need to act on.
      One of the goals of the simulations, then, was to train scientists how to do this. “On the science side, we’re the newbies here,” Achilles said.
      During the Arizona moonwalks, scientists learned how to communicate their priorities succinctly and clearly to the flight control team, which then talked with the astronauts. If scientists needed to change the traverse plan to return to a site for more pictures, for instance, they had to rationalize the request to the flight director in charge. If the director approved, a designated person communicated the information to the crew. For this simulation, that person was NASA astronaut Jessica Watkins, pictured above, who’s  a geologist by training.  
      NASA’s strict communication rules are meant to limit the distractions and hazards to astronauts during physically and intellectually demanding spacewalks. 
      Coming Up Next 
      In the weeks after the May moonwalk simulations, flight controllers and scientists have been debriefing and documenting their experiences. Next, they will revisit details like the design of the Science Evaluation Room. They’ll reconsider the roles and responsibilities of each team member and explore new tools or software upgrades to make their jobs more efficient. And at future simulations, still in the planning stages, they’ll do it all again, and again, and again, all to ensure that the real Artemis moonwalks — humanity’s first steps on the lunar surface in more than 50 years — will be perfectly choreographed.  
      View More Images from the Recent Moonwalk Simulations
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jul 01, 2024 Editor Lonnie Shekhtman Contact Lonnie Shekhtman lonnie.shekhtman@nasa.gov Location NASA Goddard Space Flight Center Related Terms
      Artemis Artemis 3 Artemis Campaign Development Division Astronauts Candidate Astronauts Exploration Systems Development Mission Directorate Goddard Space Flight Center Humans in Space Johnson Space Center Johnson’s Mission Control Center Missions NASA Centers & Facilities NASA Directorates Planetary Science Planetary Science Division Science & Research Science Mission Directorate Spacesuits The Solar System xEVA & Human Surface Mobility Explore More
      4 min read What is Artemis?
      With Artemis missions, NASA will land the first woman and first person of color on…


      Article


      5 years ago
      5 min read Moon’s South Pole is Full of Mystery, Science, Intrigue
      Lee esta historia en español aquí. NASA has its sights set on the lunar South Pole…


      Article


      2 years ago
      4 min read How Data from a NASA Lunar Orbiter is Preparing Artemis Astronauts
      As astronauts prepare to head back to the Moon for the first time since 1972,…


      Article


      10 months ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...