Jump to content

Behind the Scenes of a NASA ‘Moonwalk’ in the Arizona Desert


NASA

Recommended Posts

  • Publishers
9 Min Read

Behind the Scenes of a NASA ‘Moonwalk’ in the Arizona Desert

In the foreground, two people stand facing each other. Their arms are extended toward each other, and their fists meet at the knuckles. They are wearing big, bulky suits with lots of straps. They’re also wearing helmets and large, rectangular backpacks. The pair is standing in a large field with a mountain range in the background.
NASA astronauts Kate Rubins (left) and Andre Douglas.
Credits:
NASA/Josh Valcarcel 

NASA astronauts Kate Rubins and Andre Douglas recently performed four moonwalk simulations to help NASA prepare for its Artemis III mission. Due to launch in September 2026, Artemis III will land two, yet-to-be-selected, astronauts at the Moon’s South Pole for the first time.

Traveling to space requires immense preparation, not just for the astronauts, but for the hundreds of people who work in the background. That’s why Earth-based simulations are key. They allow spacesuit and tool designers to see their designs in action. Flight controllers who monitor spacecraft systems and the crew’s activities get to practice catching early signs of technical issues or threats to astronaut safety. And scientists use simulations to practice making geologic observations from afar through descriptions from astronauts.

Between May 13 and May 22, 2024, Rubins and Douglas trudged through northern Arizona’s San Francisco Volcanic Field, a geologically Moon-like destination shaped by millions of years of volcanic eruptions. There, they made observations of the soil and rocks around them and collected samples. After the moonwalks, the astronauts tested technology that could be used on Artemis missions, including a heads-up display that uses augmented reality to help with navigation, and lighting beacons that could help guide a crew back to a lunar lander.

Dozens of engineers and scientists came along with Rubins and Douglas. Some were in the field alongside the crew. Others joined remotely from a mock mission control center at NASA’s Johnson Space Center in Houston in a more realistic imitation of what it’ll take to work with a crew that’s some 240,000 miles away on the lunar surface.  

Here’s a look behind the scenes of a “moonwalk.”

My experience in Arizona was incredible! I worked with several teams, explored an exotic landscape, and got a taste of what it’s like to be on a mission with a crew. 

Andre Douglas

Andre Douglas

NASA Astronaut

Practice to Prepare

Two people sit side-by-side at a table inside a large tent. They’re wearing sun hats and t-shirts. The person on the left is talking and holding a pen in their left hand, while the person on the right is looking at them sideways and smiling. On the table in front of the pair is a jumble of papers, wires, an iPad and mobile phone propped up on stands, and large water bottles.

In this May 13, 2024, photo, Rubins (left), a molecular biologist who has done several expeditions to the space station, and Douglas, an engineer and member of the 2021 astronaut class, prepared for moonwalk rehearsals.  

In the foreground are two people standing side by side about four feet apart. The person on the left is leaning over a cart with large rubber wheels; the person, with their right side facing the camera is wearing large gloves, a t-shirt, a sun hat, and a large, rectangular backpack with antennas stretching out from the top. The person on the right, standing erect, is dressed similarly and has their back to the camera. The two are standing in a large, tan-colored field with small shrubs and mountains in the background. Framed between the two people is a brown and white cow, looking straight toward the camera. It is standing toward the background, between the people and the mountain range.

During the May 14 moonwalk, above, Rubins and Douglas worked to stay in the simulation mindset while a cow looked on. They wore backpacks loaded with equipment for lighting, communication, cameras, and power for those devices.

There are, of course, no cows on the Moon. But there is a region, called Marius Hills, that geologically resembles this Arizona volcanic field. Like the Arizona site, Marius Hills was shaped by ancient volcanic eruptions, so the composition of rocks at the two locations is similar.

The Arizona simulation site also resembles the Moon’s south polar region in the subtle changes in the size, abundance, and groupings of rocks that can be found there. Noting such faint differences in rocks on the Moon will help reveal the history of asteroid collisions, volcanic activity, and other events that shaped not only the Moon, but also Earth and the rest of our solar system.

“So this ‘landing site’ was a good analog for the types of small changes in regolith astronauts will look for at the lunar South Pole,” said Lauren Edgar, a geologist at the U.S. Geological Survey in Flagstaff, Ariz., who co-led the science team for the simulation.

To the delight of Edgar and her colleagues, Rubins and Douglas correctly identified faint differences in the Arizona rocks. But, despite their accomplishment, the day’s moonwalk had to be cut short due to strong winds. As with cows, there’s no wind on the mostly airless Moon. 

Science at the Table

jsc2024e034645.jpg?w=2048

Earth and planetary scientists at NASA Johnson followed the moonwalks via a live video and audio feed broadcast in the Science Evaluation Room, pictured above. These experts developed detailed plans for each simulated moonwalk and provided geology expertise to mission control.

Everyone in the room had a role. One person communicated information between the science team and the flight control team. Others monitored the crew’s science tasks to ensure the astronauts stayed on track.

A small group analyzed images of rocks, soil, and outcrops sent back by the crew on the ground in Arizona. The information they gleaned helped determine whether the crew’s science tasks for each traverse needed to change.

The decision to update tasks or not was made by a small group of experts from NASA and other institutions. Known as the “scrum,” this group of scientists, who are sitting around the table in the picture above, represented disciplines such as volcanology and mineralogy.

They evaluated the information coming in from the crew and analyses from the science team to quickly decide whether to change the day’s science tasks because of an unplanned discovery. Serving at the scrum table was a high-pressure job, as updating the plan to spend more time at one intriguing site, for instance, could mean giving up time at another.

The image shows a closeup of a map that’s pinkish in color with small, shaded areas. There are labels on the map, such as “krm” and “pu,” and dotted lines, small dots and squares and stars that mark locations on the map. A miniature lander model, smaller than the palm of the hand, is sitting at a location on the map labeled “Station 7.” Two miniature astronaut figures, one holding a U.S. flag, are standing a few inches to the right of the lander, and to the right of them sits a miniature rover.

The Arizona moonwalks also gave scientists an opportunity to test their skills at making geologic maps using data from spacecraft orbiting many miles above the surface. Such maps will identify scientifically valuable rocks and landforms at the South Pole to help NASA pick South Pole landing sites that have the most scientific value.

Scientists will use data from NASA’s Lunar Reconnaissance Orbiter to map the geology around the Artemis III landing site on the Moon. But to map the Arizona volcanic field, they relied on Earth satellite data. Then, to test whether their Arizona maps were accurate, a couple of scientists compared the crew’s locations along their traverses — self-reported based on the land features around them — to the geologic features identified on the maps.

Two people are sitting in a large vehicle with no roof, strapped into large, rectangular seats. The vehicle is sitting on brown soil. Spruce trees are in the background. The two people are looking at a box in front of them. Antennas stretch up from different parts of the vehicle.
Apollo 17 astronauts Eugene A. Cernan, wearing a green and yellow cap, and Harrison “Jack” Schmitt, during geology training at Cinder Lake Crater Field in Flagstaff, Ariz. In this 1972 image the NASA astronauts are driving a geologic rover, or “Grover,” which was a training replica of the roving vehicle they later drove on the Moon.

In the months leading up to the Arizona moonwalks, scientists taught Rubin and Douglas about geology, a discipline that’s key to deciphering the history of planets and moons. Geology training has been commonplace since the Apollo era of the 1960s and early ’70s. In fact, Apollo astronauts also trained in Arizona. These pioneer explorers spent hundreds of hours in the classroom and in the field learning geology. Artemis astronauts will have similarly intensive training. 

Operating in Moon-Like Conditions 

jsc2024e035656orig.jpg?w=2048

In the image above, Douglas stands to Rubins’ left reviewing procedures, while Rubins surveys instruments on the cart. Both are wearing 70-pound mockup planetary spacesuits that make moving, kneeling and grasping difficult, similar to how it will feel to do these activities on the Moon.

A NASA team member, not visible behind the cart in the foreground, is shining a spotlight toward the astronauts during a one-and-a-half-hour nighttime moonwalk simulation on May 16. The spotlight was used to imitate the lighting conditions of the Moon’s south polar region, where the Sun doesn’t rise and set as it does on Earth. Instead, it just moves across the horizon, skimming the surface like a flashlight lying on a table.

This visualization shows the unusual motions of Earth and the Sun as viewed from the South Pole of the Moon. Credit: NASA/Ernie Wright

The position of the Sun at the Moon has to do with the Moon’s 1.5-degree tilt on its axis. This slight tilt means neither of the Moon’s northern or southern hemispheres tips noticeably toward or away from the Sun throughout the year. In contrast, Earth’s 23.5-degree tilt allows the northern and southern hemispheres to lean closer (summer) or farther (winter) from the Sun depending on the time of year. Thus, the Sun appears higher in the sky during summer days than it does during winter days.

Compared to the daytime moonwalks, when the astronauts could easily see and describe the conditions around them, the crew was relatively quiet during the night expedition. With their small helmet lights, Rubins and Douglas could see just the area around their feet. But the duo tested supplemental portable lights and reported a big improvement in visibility of up to 20 feet around themselves.

Night simulations show us how tough it is for the astronauts to navigate in the dark. It’s pretty eye opening.

Cherie achilles

Cherie achilles

Mineralogist from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who co-led the simulation science team.

People are sitting in a typical, brightly lit office-building room. Colorful posters line the walls. A large screen is in the top right corner, showing two side-by-side images of shapes that are hard to make out. People are sitting around tables, some are kneeling, looking either at the large screen or at the small computer screens in front of them.

The Science Evaluation Room during the nighttime moonwalk simulation on May 16. Scientists sit at their workstations while a screen at the front of the room presents live video and audio of the astronauts in the field.

A person, wearing glasses, a headset, and a bright-colored shirt is in the center of the image, pointing at a computer screen — one of several visible in the image. In the background is another person, in glasses and a dark-colored polo shirt, looking down at this laptop screen. In the bottom right corner of the image a third person, wearing glasses, is visible from the side. That person is resting his head on his left fist, looking in the direction of the pointing hand.

Engineers pictured above, in Houston’s mock mission control area, tested custom-designed software for managing moonwalks. One program automatically catalogs hours of audio and video footage, plus hundreds of pictures, collected during moonwalks. Another helps the team plan moonwalks, keep track of time and tasks, and manage limited life-support supplies such as oxygen. Such tracking and archiving will provide contextual data for generations of scientists and engineers. 

  

It’s important that we make software tools that allow flight controllers and scientists to have flexibility and creativity during moonwalks, while helping keep the crew safe.

Ben Feist

Ben Feist

Software engineer in NASA Johnson’s Astromaterials Research and Exploration Science division, pointing in the image above.

Learning a Common Language 

A person with their right hand on a computer mouse, is sitting at a table with five screens in a semicircle around them. The person, wearing a headset, is turned toward one of the screens with a serious, focused expression on their face. They are sitting in a bright office area, wearing a dark dress shirt and blazer.

The audio stream used by the Houston team to communicate during spacewalks is a dizzying cacophony of voices representing all the engineering and science roles of mission control. A well-trained mission control specialist can block out the noise and focus only on information they need to act on.

One of the goals of the simulations, then, was to train scientists how to do this. “On the science side, we’re the newbies here,” Achilles said.

During the Arizona moonwalks, scientists learned how to communicate their priorities succinctly and clearly to the flight control team, which then talked with the astronauts. If scientists needed to change the traverse plan to return to a site for more pictures, for instance, they had to rationalize the request to the flight director in charge. If the director approved, a designated person communicated the information to the crew. For this simulation, that person was NASA astronaut Jessica Watkins, pictured above, who’s  a geologist by training.  

NASA’s strict communication rules are meant to limit the distractions and hazards to astronauts during physically and intellectually demanding spacewalks. 

Coming Up Next 

In the weeks after the May moonwalk simulations, flight controllers and scientists have been debriefing and documenting their experiences. Next, they will revisit details like the design of the Science Evaluation Room. They’ll reconsider the roles and responsibilities of each team member and explore new tools or software upgrades to make their jobs more efficient. And at future simulations, still in the planning stages, they’ll do it all again, and again, and again, all to ensure that the real Artemis moonwalks — humanity’s first steps on the lunar surface in more than 50 years — will be perfectly choreographed.  

View More Images from the Recent Moonwalk Simulations

By Lonnie Shekhtman
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has awarded Bastion Technologies Inc., of Houston, the Center Occupational Safety, Health, Medical, System Safety and Mission Assurance Contract (COSMC) at the agency’s Ames Research Center in California’s Silicon Valley.
      The COSMC contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract, with an indefinite-delivery/indefinite-quantity component and maximum potential value of $53 million. The contract phase-in begins Thursday, Jan. 2, 2025, followed by a one-year base period that begins Feb. 14, 2025, and options to extend performance through Aug. 13, 2030.
      Under this contract, the company will provide support for occupational safety, industrial hygiene, health physics, safety and health training, emergency response, safety culture, medical, wellness, fitness, and employee assistance. The contractor also will provide subject matter expertise in several areas including system safety, software safety and assurance, quality assurance, pressure system safety, procurement quality assurance, and range safety. Work will primarily be performed at NASA Ames and NASA’s Armstrong Flight Research Center in Edwards, California, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      NASA Headquarters, Washington
      202-358-1600
      tiernan.p.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By NASA
      NASA Deputy Administrator Pam Melroy speaks during an agency town hall on Sept. 21, 2021 at NASA Headquarters in Washington. Credit: NASA/Aubrey Gemignani NASA Deputy Administrator Pam Melroy and Nicola Fox, associate administrator for NASA’s Science Mission Directorate, will travel to Mexico City on Sunday, Nov. 24, for a multi-day trip to build on previous engagements and advance scientific and technological collaboration between the United States and Mexico.
      This visit will focus on fostering partnerships in astronomy and astrophysics research, as well as highlighting opportunities for economic, educational, and science, technology, engineering, and math collaborations between the two nations.
      Melroy’s trip will include high-level meetings with senior Mexican government officials, including the secretariat-designate for Science, Technology, Humanities, and Innovation. Melroy and Fox also will meet with leaders from academia, industry, and scientific institutions. These discussions will emphasize expanding cooperation in space science, with particular focus on Mexico’s growing astronomy programs.
      This visit builds on Melroy’s trip to Mexico City earlier this year and reflects NASA’s commitment to advancing international cooperation in space and science for the benefit of all.
      For more information about NASA’s international partnerships, visit:
      https://www.nasa.gov/oiir
      -end-
      Amber Jacobson / Katherine Rohloff
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / katherine.a.rohloff@nasa.gov
      Share
      Details
      Last Updated Nov 22, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Science Mission Directorate Office of International and Interagency Relations (OIIR) View the full article
    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By NASA
      2 Min Read Why NASA Is a Great Place to Launch Your Career 
      Students at NASA's Jet Propulsion Laboratory pose for photos around the laboratory wearing their eclipse glasses. Credits: NASA/JPL-Caltech  Recently recognized as the most prestigious internship program by Vault.com, NASA has empowered countless students and early-career professionals to launch careers in science, technology, engineering, and mathematics (STEM) fields. NASA interns make real contributions to space and science missions, making it one of the best places to start your career. 
      “NASA internships give students the chance to work on groundbreaking projects alongside experts, providing impactful opportunities for professional growth,” said Mike Kincaid, associate administrator for NASA’s Office of STEM Engagement. “Since starting my career as an intern at NASA’s Johnson Space Center in Houston, I’ve experienced firsthand how NASA creates lasting connections and open doors—not just for me, but for former interns who are now colleagues across the agency. These internships build STEM skills, confidence, and networks, preparing the next generation of innovators and leaders.” 
      NASA interns achieve impressive feats, from discovering new exoplanets to becoming astronauts and even winning Webby Awards for their science communication efforts. These valuable contributors play a crucial role in NASA’s mission to explore the unknown for the benefit of all. Many NASA employees start their careers as interns, a testament to the program’s lasting impact. 
      Students congratulate the 23rd astronaut class at NASA’s Johnson Space Center in Houston on March 5, 2024.NASA/Josh Valcarcel Additionally, NASA is recognized as one of America’s Best Employers for Women and one of America’s Best Employers for New Graduates by Forbes, reflecting the agency’s commitment to fostering a diverse and inclusive environment. NASA encourages people from underrepresented groups to apply, creating a diverse cohort of interns who bring a wide range of perspectives and ideas to the agency.  
      “My internship experience has been incredible. I have felt welcomed by everyone I’ve worked with, which has been so helpful as a Navajo woman as I’ve often felt like an outsider in male-dominated STEM spaces,” said Tara Roanhorse, an intern for NASA’s Office of STEM Engagement. 
      If you’re passionate about space, technology, and making a difference in the world, NASA’s internship program is the perfect place to begin your journey toward a fulfilling and impactful career.  
      To learn more about NASA’s internship programs, visit: https://www.intern.nasa.gov/ 
      Keep Exploring Discover More STEM Topics From NASA
      For Colleges and Universities
      For Students Grades 9-12
      Join Artemis
      Learning Resources
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for life before DNA emerged — can favor making the building blocks of proteins in either the left-hand or the right-hand orientation. Resolving this mystery could provide clues to the origin of life. The findings appear in research recently published in Nature Communications.
      Proteins are the workhorse molecules of life, used in everything from structures like hair to enzymes (catalysts that speed up or regulate chemical reactions). Just as the 26 letters of the alphabet are arranged in limitless combinations to make words, life uses 20 different amino acid building blocks in a huge variety of arrangements to make millions of different proteins. Some amino acid molecules can be built in two ways, such that mirror-image versions exist, like your hands, and life uses the left-handed variety of these amino acids. Although life based on right-handed amino acids would presumably work fine, the two mirror images are rarely mixed in biology, a characteristic of life called homochirality. It is a mystery to scientists why life chose the left-handed variety over the right-handed one.
      A diagram of left-handed and right-handed versions of the amino acid isovaline, found in the Murchison meteorite.NASA DNA (deoxyribonucleic acid) is the molecule that holds the instructions for building and running a living organism. However, DNA is complex and specialized; it “subcontracts” the work of reading the instructions to RNA (ribonucleic acid) molecules and building proteins to ribosome molecules. DNA’s specialization and complexity lead scientists to think that something simpler should have preceded it billions of years ago during the early evolution of life. A leading candidate for this is RNA, which can both store genetic information and build proteins. The hypothesis that RNA may have preceded DNA is called the “RNA world” hypothesis.
      If the RNA world proposition is correct, then perhaps something about RNA caused it to favor building left-handed proteins over right-handed ones. However, the new work did not support this idea, deepening the mystery of why life went with left-handed proteins.
      The experiment tested RNA molecules that act like enzymes to build proteins, called ribozymes. “The experiment demonstrated that ribozymes can favor either left- or right-handed amino acids, indicating that RNA worlds, in general, would not necessarily have a strong bias for the form of amino acids we observe in biology now,” said Irene Chen, of the University of California, Los Angeles (UCLA) Samueli School of Engineering, corresponding author of the Nature Communications paper.
      In the experiment, the researchers simulated what could have been early-Earth conditions of the RNA world. They incubated a solution containing ribozymes and amino acid precursors to see the relative percentages of the right-handed and left-handed amino acid, phenylalanine, that it would help produce. They tested 15 different ribozyme combinations and found that ribozymes can favor either left-handed or right-handed amino acids. This suggested that RNA did not initially have a predisposed chemical bias for one form of amino acids. This lack of preference challenges the notion that early life was predisposed to select left-handed-amino acids, which dominate in modern proteins.
      “The findings suggest that life’s eventual homochirality might not be a result of chemical determinism but could have emerged through later evolutionary pressures,” said co-author Alberto Vázquez-Salazar, a UCLA postdoctoral scholar and member of Chen’s research group.
      Earth’s prebiotic history lies beyond the oldest part of the fossil record, which has been erased by plate tectonics, the slow churning of Earth’s crust. During that time, the planet was likely bombarded by asteroids, which may have delivered some of life’s building blocks, such as amino acids. In parallel to chemical experiments, other origin-of-life researchers have been looking at molecular evidence from meteorites and asteroids.
      “Understanding the chemical properties of life helps us know what to look for in our search for life across the solar system,” said co-author Jason Dworkin, senior scientist for astrobiology at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and director of Goddard’s Astrobiology Analytical Laboratory.
      Dworkin is the project scientist on NASA’s OSIRIS-REx mission, which extracted samples from the asteroid Bennu and delivered them to Earth last year for further study.
      “We are analyzing OSIRIS-REx samples for the chirality (handedness) of individual amino acids, and in the future, samples from Mars will also be tested in laboratories for evidence of life including ribozymes and proteins,” said Dworkin.
      The research was supported by grants from NASA, the Simons Foundation Collaboration on the Origin of Life, and the National Science Foundation. Vázquez-Salazar acknowledges support through the NASA Postdoctoral Program, which is administered by Oak Ridge Associated Universities under contract with NASA.
      Share
      Details
      Last Updated Nov 21, 2024 EditorWilliam SteigerwaldContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Astrobiology Explore More
      2 min read NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors
      NASA-supported scientists have developed a method to compute how tides affect the interiors of planets…
      Article 2 weeks ago 2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
      NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…
      Article 3 weeks ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
      Article 3 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...