Members Can Post Anonymously On This Site
NSIC changes commanders, redesignated Field Operating Agency
-
Similar Topics
-
By NASA
Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 5 min read
Updates on NASA Field Campaigns
Snippets from The Earth Observer’s Editor’s Corner
PACE-PAX
PACE–PAX had as its primary objective to gather data to validate measurements from NASA’s PACE mission. A secondary objective was validation of observations by the European Space Agency’s recently launched Earth Cloud, Aerosol, and Radiation Explorer (EarthCARE) mission. The operations spanned Southern and Central California and nearby coastal regions, logging 81 flight hours for the NASA ER-2, which operated out of NASA’s Armstrong Flight Research Center (AFRC) in Edwards, CA, and 60 hours for the Twin Otter aircraft, which was operated by the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) at the Naval Postgraduate School (Monterey, CA) out of Marina Municipal Airport in Marina, CA – see Photo.
Photo. The Twin Otter aircraft operated out of the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) during the Plankton, Aerosol, Cloud, ocean Ecosystem–Postlaunch Airborne eXperiment (PACE–PAX) campaign. The image shows the Twin Otter aircraft missing the approach at Marina Airport to check instrument performance on the aircraft against identical instrumentation on an airport control tower. Photo credit: NASA NASA’s ER-2 aircraft flies at an altitude of approximately 20 km, well above the troposphere. PACE–PAX researchers used the unique high-altitude vantage point to make observations of the atmosphere, ocean, and land surface in a similar manner to that of PACE. In so doing, they can verify the accuracy of data gathered by the satellite in orbit. Meanwhile, the Twin Otter flew at a much lower altitude in the atmosphere (~3 km). The instrumentation onboard the Twin Otter was used to sample and measure cloud droplet size, aerosol size, and the amount of light scattered or absorbed by the particles. These aircraft observations are the same atmospheric properties that PACE observes from its broader vantage point in polar orbit. In addition to the PACE and aircraft observations, the R/V Shearwater operated 15 day trips out of Santa Barbara, CA, gathering additional surface-based observations along with other vessels and floats.
Field campaigns, such as PACE–PAX, are designed to collect measurements at different scales and conditions for comparison to satellite observations. When it comes to doing this successfully, timing is everything. PACE–PAX observations were carefully coordinated so that the two aircraft were in flight and taking observations at the same time, so observations were being obtained at the surface (e.g., on the ship) as well as the satellite passing overhead. This takes a tremendous amount of effort on the part of the organizers.
BlueFlux
BlueFlux was set up to study the wetland ecosystems of South Florida. Wetland ecosystems represent the ever-changing line between land and sea, and are exceptionally vulnerable to climate disturbances, such as sea level rise and tropical cyclones. As these threats intensify, wetland ecology – and its role as a critical sink of CO2 – faces an uncertain future.
BlueFlux observations will contribute to the development of a new, remote-sensing data product called “Daily Flux Predictions for South Florida,” which will help research teams led by Ben Poulter [GSFC] explain and quantify the changing relationship between wetlands and atmospheric greenhouse gas concentrations (GHG). The goal is to refine global GHG budget analyses and provide regional stakeholders with information to evaluate how Florida’s wetlands are responding to natural and anthropogenic pressures in real time.
The “Daily Flux Predictions for South Florida” product will use retrievals of surface spectral reflectance captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA’s Aqua and Terra satellites to estimate the rate at which various gasses are exchanged between Earth’s surface and the atmosphere. Such flux measurements in coastal wetlands are historically limited on account of the relative inaccessibility of these ecosystems. To contribute to a more robust understanding of how Florida’s coastal ecology fits into the carbon cycle, BlueFlux conducted a series of airborne fieldwork deployments out of the Miami Homestead Air Reserve Base and the Miami Executive Airport in Miami-Dade County, which are adjacent to the eastern border of the Everglades National Park. The full study region – broadly referred to as South Florida – is narrowly defined by the wetland ecosystems that extend from Lake Okeechobee and its Northern estuaries to the saltwater marshland and mangrove forests along the state’s southernmost shore.
Flux measurements were made along each flight track using a payload known as the CARbon Airborne Flux Experiment (CARAFE) flying at between about 90 m and 3000 m. The researchers configured airborne observations, along with additional ground-based flux measurements, to match the spatial and temporal resolution of spectra collected by MODIS sensors, which produce surface reflectance retrievals at a 500 m daily resolution. Mirroring the scale of MODIS observations was necessary to both train the flux product’s underlying machine-learning algorithms and validate the accuracy of predictions made using satellite data alone. Data collected during BlueFlux fieldwork campaigns is available to the general public through NASA’s Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The “Daily Flux Predictions for South Florida” data product will also be accessible through NASA’s ORNL DAAC by early 2025.
Steve Platnick
EOS Senior Project Scientist
Share
Details
Last Updated Nov 14, 2024 Related Terms
Earth Science View the full article
-
By NASA
Continuing his engagement to deepen international collaboration and promote the peaceful use of space, NASA Administrator Bill Nelson will travel to Lima on Wednesday.
Nelson will meet with Maj. Gen. Roberto Melgar Sheen, director of Peru’s National Commission for Aerospace Research and Development (CONIDA) Thursday, Nov. 14, and sign a non-binding memorandum of understanding to enhance space cooperation. The memorandum of understanding between NASA and CONIDA will include safety training, a joint feasibility study for a potential sounding rockets campaign, and technical assistance for CONIDA on sounding rocket launches.
Nelson will discuss the importance of international partnerships and collaboration in space and celebrate Peru’s signing of the Artemis Accords earlier this year.
For more information about NASA’s international partnerships, visit:
https://www.nasa.gov/oiir
-end-
Meira Bernstein
Headquarters, Washington
202-615-1747
meira.b.bernstein@nasa.gov
Share
Details
Last Updated Nov 13, 2024 LocationNASA Headquarters Related Terms
Office of International and Interagency Relations (OIIR) Bill Nelson View the full article
-
By NASA
Dr. Annie Meier (second from left) and her team inside the Applied Chemistry Lab at NASA’s Kennedy Space Center in Florida began supplementing their normal workload in mid-2023 with efforts to improve the lab’s sustainable practices. In 2024, the laboratory became the first at NASA to receive certification from the non-profit My Green Lab for its efforts in sustainability.NASA/Kim Shiflett NASA’s Kennedy Space Center in Florida has a long record of achievements in sustainability and recently added another to the list when the spaceport’s Applied Chemistry Lab became the first in the agency to be certified for its environmentally conscious practices.
The My Green Lab Certification recognizes sustainability best practices in research facilities around the world. The certification program run by My Green Lab, a non-profit dedicated to creating a culture of sustainability through science, is considered a key measure of progress towards a zero-carbon future by the United Nations Race to Zero campaign.
“When I heard our lab achieved certification, I was so happy,” said Dr. Annie Meier, one of the laboratory’s chemical engineers. “It meant we could now make a conscious effort to share these green practices with all who work in our lab. We even added them to our training materials for new and incoming members in the lab.”
The lab performs research and technology development for a wide range of chemistry and engineering-related applications to solve the unique operational needs of NASA and outside partners. The lab primarily focuses on in-situ resource utilization and addressing technology gaps related to lunar and Martian sustainability. The lab’s scientists also provide expertise in the fields of logistics reduction, plasma science, hypergolic fuels, analytical instrumentation, and gas analysis.
While sustainability has long been a focus of the lab, the journey to the certification began when Riley Yager, a doctoral student from University of Alabama at Birmingham – where Meier was a technical monitor – shared her knowledge of the program after pursuing green lab practices at her university.
“I work as a sustainability ambassador at my university, so I knew of this program,” Yager said. “Sustainable practices are something woven into my everyday life, so naturally I wanted to bring those practices into my lab environments.”
After learning about the program from Yager and discovering the many other academic institutions and companies certified globally, Meier submitted a proposal to NASA and obtained funding to pursue certification for the Applied Chemistry Lab.
After a kickoff event hosted by My Green Lab in April 2023, the lab’s path to certification began with a self-assessment survey, in which members of the lab answered a series of questions about their practices in areas such as cold storage, green chemistry, infrastructure energy, resource management, waste reduction, and water. My Green Lab collected and analyzed the answers, providing a baseline assessment and recommendations to improve the lab’s sustainable practices.
“We took their initial survey and learned we had lots of room for improvements as a lab,” Meier said. “Then I worked with a few interns over the summer to spearhead the ‘green team’ to implement changes and get momentum from the entire lab.”
The lab began with minimizing purchases by improving efficiencies during the inventory process. The team also performed a waste audit of all seven of its laboratories. They adopted nitrile glove and pipette tip box recycling, reviewed the “12 principles of green chemistry” with the lab members, and installed stickers and signage about what can and cannot be unplugged to save energy. Additionally, they installed low-flow aerators on the lab tap sinks to reduce flow, and the lab now uses a recycling sink to save on water or solvents for cleaning parts.
As luck would have it, Yager ended up working at the Applied Chemistry Lab on a NASA fellowship and became a member of the green team.
“It was really fun to see that come full circle,” Meier said. “Almost all members of the lab, from our fellows to most senior members, used their self-motivation to get on the sustainability train.”
The green team continued to grow as the lab implemented changes to become more sustainable. Just over six months after the kickoff event, they completed another assessment survey. With possible certification levels of bronze, silver, gold, platinum, and green – the level that adheres closest to My Green Lab’s highest standards – the ACL was certified green, marking the first time any NASA center obtained a My Green Lab Certification.
“Our lab is looking to sustain these green practices and achieve the same status when we are reassessed in the future,” Meier said. “This effort could be a wonderful catalyst to inspire other work groups to lean towards more ‘green’ practices at the frontline in our laboratories.”
The NASA Kennedy lab joined over 2,500 labs in a range of sectors that received the My Green Lab certification. Maintaining the distinction will require recertification every two years.
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
Sols 4343-4344: Late Slide, Late Changes
NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera, showing the fractured rock target “Quarter Dome” just above and to the right of the foreground rover structure. The eastern wall of the Gediz Vallis channel can be seen in the distance. This image was taken on sol 4342 — Martian day 4,342 of the Mars Science Laboratory mission — on Oct. 23, 2024, at 12:29:34 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Oct. 23, 2024
Curiosity is driving along the western edge of the Gediz Vallis channel, heading for a good vantage point before turning westward and leaving the channel behind to explore the canyons beyond. The contact science for “Chuck Pass” on sol 4341 and backwards 30-meter drive (about 98 feet) on sol 4342 completed successfully.
This morning, planning started two hours later than usual. At the end of each rover plan is a baton pass involving Curiosity finishing its activities from the previous plan, transmitting its acquired data to a Mars-orbiting relay satellite passing over Gale Crater, and having that satellite send this data to the Deep Space Network on Earth. This dataset is crucial to our team’s decisions on Curiosity’s next activities. It is not always feasible for us to get our critical data transmitted before the preferred planning shift start time of 8 a.m. This leads to what we call a “late slide,” when our planning days start and end later than usual.
Today’s shift began as the “decisional downlink” arrived just before 10 a.m. PDT. The science planning team jumped into action as the data rolled in, completed plans for two sols of science activities, then had to quickly change those plans completely as the Rover Planners perusing new images from the decisional downlink determined that the position of Curiosity’s wheels after the drive would not support deployment of its arm, eliminating the planned use of APXS, MAHLI, and the DRT on interesting rocks in the workspace. However, the science team was able to pivot quickly and create an ambitious two-sol science plan for Curiosity with the other science instruments.
On sols 4343-4344, Curiosity will focus on examining blocks of finely layered or “laminated” bedrocks in its workspace. The “Backbone Creek” target, which has an erosion resistant vertical fin of dark material, will be zapped by the ChemCam laser to determine composition, and photographed by Mastcam. “Backbone Creek” is named for a stream in the western foothills of the Sierra Nevada of California flowing through a Natural Research Area established to protect the endangered Carpenteria californica woodland shrub. Curiosity is currently in the “Bishop” quadrangle on our map, so all targets in this area of Mount Sharp are named after places in the Sierra Nevada and Owens Valley of California. A neighboring target rock, “Fantail Lake,” which has horizontal fins among its layers, will also be imaged at high resolution by Mastcam. This target name honors a large alpine lake at nearly 10,000 feet just beyond the eastern boundary of Yosemite National Park. A fractured rock dubbed “Quarter Dome,” after a pair of Yosemite National Park’s spectacular granitic domes along the incomparable wall of Tenaya Canyon between Half Dome and Cloud’s Rest, will be the subject of mosaic images for both Mastcam and ChemCam RMI to obtain exquisite detail on delicate layers across its broken surface (see image). The ChemCam RMI telescopic camera will look at light toned rocks on the upper Gediz Vallis ridge. Curiosity will also do a Navcam dust devil movie and mosaic of dust on the rover deck, then determine dust opacity in the atmosphere using Mastcam.
Following this science block, Curiosity will drive about 18 meters (about 59 feet) and perform post-drive imaging, including a MARDI image of the ground under the rover. On sol 4344, the rover will do Navcam large dust devil and deck surveys. It will then use both Navcam and ChemCam for an AEGIS observation of the new location. Presuming that Curiosity ends the drive on more solid footing than today’s location, it will do contact science during the weekend plan, then drive on towards the next fascinating waypoint on our journey towards the western canyons of Mount Sharp.
Written by Deborah Padgett, OPGS Task Lead at NASA’s Jet Propulsion Laboratory
Image Download Share
Details
Last Updated Oct 25, 2024 Related Terms
Blogs Explore More
2 min read Red Rocks with Green Spots at ‘Serpentine Rapids’
Article
1 hour ago
4 min read Sols 4341-4342: A Bumpy Road
Article
23 hours ago
3 min read Sols 4338-4340: Decisions, Decisions
Article
3 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By Space Force
Position, Navigation and Timing Provisional Delta officially redesignated as Mission Delta 31 in a ceremony at Peterson Space Force Base.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.