Members Can Post Anonymously On This Site
Scientists Find Faint Objects with Hubble that May Have Ended the Universe's 'Dark Ages'
-
Similar Topics
-
By NASA
This NASA/ESA Hubble Space Telescope reveals clouds of gas and dust near the Tarantula Nebula, located in the Large Magellanic Cloud about 160,000 light-years away.ESA/Hubble & NASA, C. Murray The universe is a dusty place, as this NASA/ESA Hubble Space Telescope image featuring swirling clouds of gas and dust near the Tarantula Nebula reveals. Located in the Large Magellanic Cloud about 160,000 light-years away in the constellations Dorado and Mensa, the Tarantula Nebula is the most productive star-forming region in the nearby universe, home to the most massive stars known.
The nebula’s colorful gas clouds hold wispy tendrils and dark clumps of dust. This dust is different from ordinary household dust, which may include bits of soil, skin cells, hair, and even plastic. Cosmic dust is often comprised of carbon or of molecules called silicates, which contain silicon and oxygen. The data in this image was part of an observing program that aims to characterize the properties of cosmic dust in the Large Magellanic Cloud and other nearby galaxies.
Dust plays several important roles in the universe. Even though individual dust grains are incredibly tiny, far smaller than the width of a single human hair, dust grains in disks around young stars clump together to form larger grains and eventually planets. Dust also helps cool clouds of gas so that they can condense into new stars. Dust even plays a role in making new molecules in interstellar space, providing a venue for individual atoms to find each other and bond together in the vastness of space.
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
Hubble Spies a Spiral That May Be Hiding an Imposter
The spiral galaxy UGC 5460 shines in this NASA/ESA Hubble Space Telescope image. UGC 5460 sits about 60 million light-years away in the constellation Ursa Major. ESA/Hubble & NASA, W. Jacobson-Galán, A. Filippenko, J. Mauerhan
Download this image
The sparkling spiral galaxy gracing this NASA/ESA Hubble Space Telescope image is UGC 5460, which sits about 60 million light-years away in the constellation Ursa Major. This image combines four different wavelengths of light to reveal UGC 5460’s central bar of stars, winding spiral arms, and bright blue star clusters. Also captured in the upper left-hand corner is a far closer object: a star just 577 light-years away in our own galaxy.
UGC 5460 has hosted two recent supernovae: SN 2011ht and SN 2015as. It’s because of these two stellar explosions that Hubble targeted this galaxy, collecting data for three observing programs that aim to study various kinds of supernovae.
SN 2015as was as a core-collapse supernova: a cataclysmic explosion that happens when the core of a star far more massive than the Sun runs out of fuel and collapses under its own gravity, initiating a rebound of material outside the core. Hubble observations of SN 2015as will help researchers understand what happens when the expanding shockwave of a supernova collides with the gas that surrounds the exploded star.
SN 2011ht might have been a core-collapse supernova as well, but it could also be an impostor called a luminous blue variable. Luminous blue variables are rare stars that experience eruptions so large that they can mimic supernovae. Crucially, luminous blue variables emerge from these eruptions unscathed, while stars that go supernova do not. Hubble will search for a stellar survivor at SN 2011ht’s location with the goal of revealing the explosion’s origin.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More
The Death Throes of Stars
Homing in on Cosmic Explosions
Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Feb 21, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies Stars Supernovae Keep Exploring Discover More Topics From NASA
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Night Sky Challenge
Hubble’s Galaxies
Reshaping Our Cosmic View: Hubble Science Highlights
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
How to Attend
The workshop will be hosted by NASA Jet Propulsion Laboratory.
Virtual and in-person attendance are available. Registration is required for both. (Link coming soon!)
Virtual attendees will receive connection information one week before the workshop.
Background, Goals and Objectives
The NASA Engineering and Safety Center (NESC) is conducting an assessment of the state of cold capable electronics for future lunar surface missions. The intent is to enable the continuous use of electronics with minimal or no thermal management on missions of up to 20 years in all regions of the lunar surface, e.g., permanently shadowed regions and equatorial. The scope of the assessment includes: capture of the state of cold electronics at NASA, academia, and industry; applications and challenges for lunar environments; gap analyses of desired capabilities vs state of the art/practice; guidance for cold electronics selection, evaluation and qualification; and recommendations for technology advances and follow-on actions to close the gaps. The preliminary report of the assessment will be available the first week of April 2025 on this website, i.e., 3 weeks prior to the workshop. Attendees are urged to read the report beforehand as the workshop will provide only a limited, high-level summary of the report’s key findings. The goal of the workshop is to capture your feedback with regards to the findings of the report, especially in the areas below: Technologies, new or important studies or data that we missed. Gaps, i.e. requirements vs available capabilities that we missed. Additional recommendations, suggestions, requests, that we missed.
Preliminary Agenda
Day 1, April 30, 2025 8:00 – 9:00 Sign-in 9:00 – 10:00 Introduction – Y. Chen 10:00 – 11:00 Environment and Architectural Considerations – R. Some 11:00 – 12:00 Custom Electronics – M. Mojarradi 12:00 – 13:00 Lunch 13:00 – 14:00 COTS Components – J. Yang-Scharlotta 14:00 – 15:00 Power Architecture – R. Oeftering 15:00 – 15:30 Energy Storage – E. Brandon 15:30 – 17:00 Materials and Packaging and Passives – L. Del Castillo 17:00 – 17:30 Qualification – Y. Chen 18:30 Dinner Day 2, May 1, 2025 8:00 – 9:00 Sign-in 9:00 – 12:00 Review and discussion of key findings 12:00 – 13:00 Lunch 13:00 – 15:00 Follow on work concepts & discussions. Please be prepared to discuss: 15 min each from industry primes and subsystem developers What would you like to see developed and how would it impact your future missions/platforms? 15:00 – 17:30 Follow on work concepts & discussions 15 min each from technology & component developers, academia, government agencies, etc. What would you like to be funded to do and what are benefits to NASA/missions? 17:00 – 17:30 Wrap up – Y. Chen Points of Contact
If you have any questions regarding the workshop, please contact Roxanne Cena at Roxanne.R.Cena@jpl.nasa.gov and Amy K. Wilson at Amy.K.Wilson@jpl.nasa.gov
Share
Details
Last Updated Feb 20, 2025 Related Terms
NASA Engineering and Safety Center Explore More
2 min read NESC Key In-Progress Technical Activities
Article 1 week ago 5 min read Mechanical Systems TDT Support Reaches Across NASA Programs
Article 2 months ago 2 min read NESC Assists in Heatshield Investigation
Article 2 months ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
Hubble Captures a Cosmic Cloudscape
This NASA/ESA Hubble Space Telescope reveals clouds of gas and dust near the Tarantula Nebula, located in the Large Magellanic Cloud about 160,000 light-years away. ESA/Hubble & NASA, C. Murray
Download this image
The universe is a dusty place, as this NASA/ESA Hubble Space Telescope image featuring swirling clouds of gas and dust near the Tarantula Nebula reveals. Located in the Large Magellanic Cloud about 160,000 light-years away in the constellations Dorado and Mensa, the Tarantula Nebula is the most productive star-forming region in the nearby universe, home to the most massive stars known.
The nebula’s colorful gas clouds hold wispy tendrils and dark clumps of dust. This dust is different from ordinary household dust, which may include of bits of soil, skin cells, hair, and even plastic. Cosmic dust is often comprised of carbon or of molecules called silicates, which contain silicon and oxygen. The data in this image was part of an observing program that aims to characterize the properties of cosmic dust in the Large Magellanic Cloud and other nearby galaxies.
Dust plays several important roles in the universe. Even though individual dust grains are incredibly tiny, far smaller than the width of a single human hair, dust grains in disks around young stars clump together to form larger grains and eventually planets. Dust also helps cool clouds of gas so that they can condense into new stars. Dust even plays a role in making new molecules in interstellar space, providing a venue for individual atoms to find each other and bond together in the vastness of space.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More
Caldwell 103 / Tarantula Nebula / 30 Doradus
Hubble Studies the Tarantula Nebula’s Outskirts
Hubble’s New View of the Tarantula Nebula
Hubble’s Bubbles in the Tarantula Nebula
Hubble Probes Interior of Tarantula Nebula
Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Feb 13, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Absorption or Dark Nebulae Astrophysics Astrophysics Division Emission Nebulae Goddard Space Flight Center Nebulae Star-forming Nebulae The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Exploring the Birth of Stars
Hubble’s Night Sky Challenge
Hubble Focus: The Lives of Stars
This e-book highlights the mission’s recent discoveries and observations related to the birth, evolution, and death of stars.
View the full article
-
By NASA
Four individuals with NASA affiliations have been named 2022 fellows by the American Association for the Advancement of Science (AAAS) in recognition of their scientifically and socially distinguished achievements in the scientific enterprise.
Election as a Fellow by the AAAS Council honors members whose efforts on behalf of the advancement of science or its applications in service to society have distinguished them among their peers and colleagues. The 2022 Fellows class includes 508 scientists, engineers, and innovators spanning 24 scientific disciplines.
Rita Sambruna from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, was recognized in the AAAS Section on Astronomy, and Jennifer Wiseman, also from Goddard, was recognized in the AAAS Section on Physics. Dorothy Peteet of NASA’s Goddard Institute for Space Studies (GISS) in New York was honored in the AAAS section on Earth Science. Erik Conway of NASA’s Jet Propulsion Laboratory (JPL) in southern California was honored for distinguished contributions and public outreach to the history of science and understanding of contemporary science and science policy.
Dr. Rita Sambruna is the acting deputy director of the Science and Exploration Directorate and the deputy director of the Astrophysics Division at Goddard. She also promotes increased participation of underrepresented groups in science.Courtesy of Rita M. Sambruna Rita Sambruna
Dr. Rita Sambruna is the acting deputy director of the Science and Exploration Directorate and the deputy director of the Astrophysics Division at Goddard. She also promotes increased participation of underrepresented groups in science.
She worked with a team to position Goddard to lead the decadal top priority missions. She led a team to set into place a vision for a Multi-Messenger Astrophysics Science Support Center at Goddard, to lead the astrophysics community in reaping the most from NASA- and ground-based observations of celestial sources.
She came to Goddard in 2005 to work on multiwavelength observations of jets using the Fermi Gamma-ray Space Telescope and other NASA capabilities. From 2010 to 2020 she worked at NASA Headquarters, Washington, as a program scientist for astrophysics. Her research interests include relativistic jets, physics of compact objects, supermassive black holes in galaxies, and multiwavelength and multi-messenger astrophysics.
In December 2022, Sambruna was awarded the Honorary Fellowship of the Royal Astronomical Society (RAS) as an internationally acclaimed astrophysicist who embodies the RAS mission in promoting the advancement of science, the increased participation of historically underrepresented groups in astronomy, and a broad interest in astronomy. In 2019 she was awarded the NASA Extraordinary Achievement Medal for her leadership on the 2020 Astrophysics Decadal Survey studies. She was named Fellow of the American Physical Society in 2020 and a Fellow of the American Astronomical Society in 2021.
Dr. Jennifer Wiseman is a senior astrophysicist at Goddard and a Senior Fellow at Goddard, where she serves as the senior project scientist for the Hubble Space Telescope. Her primary responsibility is to ensure that the Hubble mission is as scientifically productive as possible.NASA Jennifer Wiseman
Dr. Jennifer Wiseman is a senior astrophysicist at Goddard and a Senior Fellow at Goddard, where she serves as the senior project scientist for the Hubble Space Telescope. Her primary responsibility is to ensure that the Hubble mission is as scientifically productive as possible. Previously, Wiseman headed Goddard’s Laboratory for Exoplanets and Stellar Astrophysics. She started her career at NASA in 2003 as the program scientist for Hubble and several other astrophysics missions at NASA Headquarters.
Wiseman’s scientific expertise is centered on the study of star-forming regions in our galaxy using a variety of tools, including radio, optical, and infrared telescopes. She has a particular interest in dense interstellar gas cloud cores, embedded protostars, and their related outflows as active ingredients of cosmic nurseries where stars and their planetary systems are born. In addition to research in astrophysics, Wiseman is also interested in science policy and public science outreach and engagement. She has served as a congressional science fellow of the American Physical Society, an elected councilor of the American Astronomical Society, and a public dialogue leader for AAAS. She enjoys giving talks on the excitement of astronomy and scientific discovery, and has appeared in many science and news venues, including The New York Times, The Washington Post, NOVA, and National Public Radio.
Dr. Dorothy M. Peteet is a senior research scientist at GISS and an adjunct professor at Columbia University. She directs the Paleoecology Division of the New Core Lab at Lamont Doherty Earth Observatory (LDEO) of Columbia.NASA Dorothy Peteet
Dr. Dorothy M. Peteet is a senior research scientist at GISS and an adjunct professor at Columbia University. She directs the Paleoecology Division of the New Core Lab at Lamont Doherty Earth Observatory (LDEO) of Columbia.
In collaboration with GISS climate modelers and LDEO geochemists, she is studying conditions of the Late Pleistocene and Holocene that are archived in sediments from lakes and wetlands. Peteet documents past changes in vegetation, derived from analyses of pollen and spores, plant and animal macrofossils, carbon, and charcoal embedded in sediments. Her research provides local and regional records of ancient vegetational and climate history. One recent focus has been the sequestration of carbon in northern peatlands and coastal marshes: ecosystems that are now vulnerable to climate change and potentially substantial releases of carbon back into the atmosphere.
Peteet also has performed climate modeling experiments to test hypotheses concerning the last glacial maximum and abrupt climate change. She is interested in climate sensitivity and in how past climate changes and ecological shifts might provide insights on future climate change.
Erik Conway has served as the historian at JPL since 2004. Prior to that, he was a contract historian at NASA’s Langley Research Center in Hampton, Virginia. He is a historian of science and technology, and has written histories of atmospheric science, supersonic transportation, aviation infrastructure, Mars exploration, and climate change denial.NASA Erik Conway
Erik Conway has served as the historian at JPL since 2004. Prior to that, he was a contract historian at NASA’s Langley Research Center in Hampton, Virginia. He is a historian of science and technology, and has written histories of atmospheric science, supersonic transportation, aviation infrastructure, Mars exploration, and climate change denial.
He is the author of nine books, most recently, “A History of Near-Earth Objects Research” (NASA, 2022), and “The Big Myth” (Bloomsbury, 2023). His book “Merchants of Doubt” with Naomi Oreskes was awarded the Helen Miles Davis and Watson Davis prize from the History of Science Society. He received a Guggenheim Fellowship in 2018 and the Athelstan Spilhaus Award from the American Geophysical Union in 2016.
AAAS noted that these honorees have gone above and beyond in their respective disciplines. They bring a broad diversity of perspectives, innovation, curiosity, and passion that will help sustain the scientific field today and into the future. Many of these individuals have broken barriers to achieve successes in their given disciplines.
AAAS is the world’s largest general scientific society and publisher of the Science family of journals.
For information about NASA and agency programs, visit: https://www.nasa.gov
Share
Details
Last Updated Feb 10, 2025 EditorJamie Adkins Related Terms
Goddard Space Flight Center Goddard Institute for Space Studies People of Goddard View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.