Jump to content

NASA Opportunities Fuel Growth and Entrepreneurship for Bronco Space Club Students


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Two men adjust the lens on the Bronco Ember technology
The Bronco Space team assembles its Bronco Ember technology, which uses a short-wave infrared camera with AI to improve early wildfire detection.
Credit: Bronco Space

NASA’s public competitions can catalyze big changes – not just for the agency but also for participants. Bronco Space, the CubeSat laboratory at California State Polytechnic University in Pomona, California, matured more than just space technology as a result of winning funds from NASA’s TechLeap Prize competition. It grew from its roots in a broom closet to a newly built lab on campus, expanding its capacity to mature space technologies long into the future.

The TechLeap Prize seeks to rapidly identify and develop space technologies through a series of challenges that each address a specific technology need for NASA and the nation. In addition to a cash prize, winners receive access to a suborbital or orbital flight opportunity on a commercial flight platform. Bronco Space won $500,000 in the inaugural TechLeap Prize, Autonomous Observation Challenge, launched in 2021. The challenge sought small spacecraft technologies that could autonomously detect, locate, track, and collect data on transient events on Earth and beyond. The team, made up of both undergraduate and graduate students, developed and launched a wildfire detection system called Bronco Ember, which used a short-wave infrared camera with AI (artificial intelligence) to improve early wildfire detection.

Zachary Gaines was an undergraduate student when he participated in the first challenge through TechLeap with Bronco Space. He has since graduated and now supervises the lab at Cal Poly Pomona. Gaines notes how the prize gave the team flexibility to invest in their lab and expand the university’s technology development and maturation capabilities.

“Because TechLeap gave us prize money rather than a grant, we had the freedom to invest those funds,” said Gaines. “If we want to make a real-world impact, which we always want to do, we needed a real lab with equipment. Thanks to TechLeap, we now have space in an innovation village right outside of campus.”

In 2022, Gaines was also involved in Bronco Space’s second time participating in TechLeap as part of the first Nighttime Precision Landing Challenge. The competition sought sensing systems to detect surface hazards from at least 250 meters high and process the data in real-time to generate a terrain map suitable for a spacecraft to land safely in the dark. As one of three winners eligible to receive up to $650,000 each, Bronco Space developed a system using a light projector to create an initial geometry map for landing. The system then uses LIDAR (light detection and ranging) along with advances in computer vision, machine learning, robotics, and computing to generate a map that reconstructs lunar terrain.

A 3D image of a suburban neighborhood, with single family homes on a street that circles the neighborhood.
A demo of the 3D digital “twin” app created by PRISM Intelligence for NASA’s Entrepreneurs Challenge.
Credit: Bronco Space

From the experience with TechLeap, Gaines and other team members formed the small business Pegasus Intelligence and Space, now PRISM Intelligence, and participated in another challenge – NASA’s Entrepreneurs Challenge. This competition seeks the development and commercialization of lunar payloads and climate science through an entrepreneurial and venture lens to advance the Agency’s science exploration goals. The company’s technology, also called PRISM, is a 3D digital map of the world that uses AI to make the “twin” world searchable. The challenge encouraged Gaines and the PRISM team to bridge the gap between available data and consumer end-users. PRISM was a Round 2 winner of the challenge, receiving a share of the $1 million prize as well as exposure to external funders and investors.

Gaines traces the success of PRISM back to his first TechLeap experience: “The company wouldn’t have happened if we hadn’t done TechLeap. It helped me understand how to develop technologies for industry.”

The company and the university continue to secure NASA support. In December 2023, Cal Poly Pomona was selected to receive a two-year funded cooperative agreement through NASA’s University SmallSat Technology Partnership.

“When people invest in your ideas and continue to support them, they help you get smarter and increase your understanding of people’s needs,” said Gaines. “Building technologies with the goal of a real-world impact is really motivating.”

A young man sits on an A-frame ladder inspecting a large piece of technology, a sensing system developed by Bronco Space. The technology appears mostly silver with a pointed top with a silver sphere near the top and a gold-and-solver sphere near the bottom visible from the technology's framed exterior
Members of Bronco Space developed a sensing system that generates a map for precise spacecraft landing as part of NASA’s second TechLeap competition.
Credit: Bronco Space

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The Space Force releases the Space Warfighting framework, outlining the service's vision for achieving and maintaining space superiority while ensuring the long-term safety and sustainability of the space domain.

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Piloted by NASA’s Tim Williams, the ER-2 science aircraft ascends for one of the final science flights for the GSFC Lidar Observation and Validation Experiment (GLOVE) on Feb. 1, 2025. As a collaboration between engineers, scientists, and aircraft professionals, GLOVE aims to improve satellite data products for Earth Science applications. NASA/Steve Freeman In February, NASA’s ER-2 science aircraft flew instruments designed to improve satellite data products and Earth science observations. From data collection to processing, satellite systems continue to advance, and NASA is exploring how instruments analyzing clouds can improve data measurement methods.
      Researchers participating in the Goddard Space Flight Center Lidar Observation and Validation Experiment (GLOVE) used the ER-2 – based at NASA’s Armstrong Flight Research Center in Edwards, California – to validate satellite data about cloud and airborne particles in the Earth’s atmosphere. Scientists are using GLOVE instruments installed onboard the aircraft to measure and validate data about clouds generated by satellite sensors already orbiting in space around Earth.
      “The GLOVE data will allow us to test new artificial intelligence algorithms in data processing,” said John Yorks, principal investigator for GLOVE and research physical scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “These algorithms aim to improve the cloud and aerosol detection in data produced by the satellites.”
      Jennifer Moore, a researcher from NASA’s Goddard Space Flight Center, checks the cabling on the Roscoe instrument at NASA’s Armstrong Flight Research Center in Edwards, California, for the GSFC Lidar Observation and Validation Experiment (GLOVE) on Feb. 1, 2025. The Roscoe instrument will be uploaded onto NASA’s ER-2 science aircraft.NASA/Steve Freeman The validation provided by GLOVE is crucial because it ensures the accuracy and reliability of satellite data. “The instruments on the plane provide a higher resolution measurement ‘truth’ to ensure the data is a true representation of the atmospheric scene being sampled,” Yorks said.
      The ER-2 flew over various parts of Oregon, Arizona, Utah, and Nevada, as well as over the Pacific Ocean off the coast of California. These regions reflected various types of atmospheres, including cirrus clouds, marine stratocumulus, rain and snow, and areas with multiple types of clouds.
      “The goal is to improve satellite data products for Earth science applications,” Yorks said. “These measurements allow scientists and decision-makers to confidently use this satellite information for applications like weather forecasting and hazard monitoring.”
      Researcher Jackson Begolka from the University of Iowa examines instrument connectors onboard the ER-2 aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, on Feb. 1, 2025. The GLOVE instrument will validate data from satellites orbiting the Earth.NASA/Steve Freeman The four instruments installed on the ER-2 were the Cloud Physics Lidar, the Roscoe Lidar, the enhanced Moderate Resolution Imaging Spectroradiometer Airborne Simulator, and the Cloud Radar System. These instruments validate data produced by sensors on NASA’s Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) and the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), a joint venture between the ESA (European Space Agency) and JAXA (Japan Aerospace Exploration Agency).
      “Additionally, the EarthCARE satellite is flying the first ever Doppler radar for measurements of air motions within clouds,” Yorks said. While the ER-2 is operated by pilots and aircrew from NASA Armstrong, these instruments are supported by scientists from NASA Goddard, NASA’s Ames Research Center in California’s Silicon Valley, and the Naval Research Laboratory office in Monterey, California, as well as by students from the University of Iowa in Iowa City and the University of Maryland College Park.
      Share
      Details
      Last Updated Apr 16, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science Earth Science Earth Science Technology Office Earth's Atmosphere ER-2 Goddard Space Flight Center Explore More
      4 min read Hubble Provides New View of Galactic Favorite
      As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new…
      Article 9 hours ago 4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements
      Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are…
      Article 1 day ago 5 min read Can Solar Wind Make Water on Moon? NASA Experiment Shows Maybe 
      Scientists have hypothesized since the 1960s that the Sun is a source of ingredients that…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA and SpaceX are targeting no earlier than 4:15 a.m. EDT on Monday, April 21, for the next launch to deliver scientific investigations, supplies, and equipment to the International Space Station. Filled with about 6,700 pounds of supplies, the SpaceX Dragon spacecraft, on the company’s Falcon 9 rocket, will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      This launch is the 32nd SpaceX commercial resupply services mission to the orbital laboratory for the agency, and the 12th SpaceX launch under the Commercial Resupply Services-2 (CRS) contract. The first 20 launches were under the original resupply services contract.
      NASA’s live launch coverage will begin at 3:55 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms.
      NASA’s SpaceX 32nd commercial resupply mission will launch on the company’s Dragon spacecraft on the SpaceX Falcon 9 rocket to deliver research and supplies to the International Space StationNASA NASA’s SpaceX 32nd commercial resupply mission will launch from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Arrival & Departure
      The SpaceX Dragon spacecraft will arrive at the space station and dock autonomously to the zenith port of the station’s Harmony module at approximately 8:20 a.m. Tuesday, April 22. Live coverage NASA’s coverage of the rendezvous and docking will begin at 6:45 a.m on NASA+. NASA astronaut Jonny Kim, Expedition 73 commander and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi will monitor the arrival of the spacecraft, which will stay docked to the orbiting laboratory for about one month before splashing down and returning critical science and hardware to teams on Earth.
      Astronauts Jonny Kim of NASA and Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) will monitor the arrival of the SpaceX Dragon cargo spacecraft from the International Space Station.NASA Research Highlights
      Robotic Spacecraft Guidance
      Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a NASA developed, vision-based sensor to control a formation flight of small satellites.NASA Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a NASA developed, vision-based sensor to control a formation flight of small satellites. Based on a previous in-space demonstration of the technology, this investigation is designed to refine the maneuvers of multiple robots and integrate the information with spacecraft systems.
      Potential benefits of this technology include improved accuracy and reliability of systems for guidance, navigation, and control that could be applied to docking crewed spacecraft in orbit and remotely operating multiple robots on the lunar or Martian surface.
      Protection From Particles
      The Aerosol Monitors investigation tests three different air quality monitors to determine which is best suited to protect crew health and ensure mission success. NASA During spaceflight, especially long-duration missions, concentrations of airborne particles must be kept within ranges safe for crew health and hardware performance. The Aerosol Monitors investigation tests three different air quality monitors to determine which is best suited to protect crew health and ensure mission success.
      The investigation also tests a device for distinguishing between smoke and dust. Aboard the orbital outpost, the presence of dust can cause false smoke alarms that require crew member response. Reducing false alarms could save valuable crew time while continuing to protect astronaut safety.
      Next-Generation Pharmaceutical Nanostructures
      The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. NASA The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. The cassette can process more sample types, including tiny gold particles used in devices that detect cancer and other diseases or in targeted drug delivery systems. Microgravity makes it possible to produce larger and more uniform gold particles, which improves their use in research and real-life applications of technologies related to human health.
      Better Materials, Better Drugs
      The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials.NASA The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials. It also evaluates how well the materials reduce joint inflammation and whether they can help regenerate cartilage lost due to arthritis. These materials are less toxic, more stable, and more compatible with living tissues than current drug delivery technologies.
      Environmental influences such as gravity can affect the quality of these materials and delivery systems. In microgravity, they are larger and have greater uniformity and structural integrity. This investigation could help identify the best formulations and methods for cost-effective in-space production. These nanomaterials also could be used to create novel systems targeting therapy delivery that improves patient outcomes with fewer side effects.
      Helping Plants Grow
      The Rhodium USAFA NIGHT payload examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis.NASA The Rhodium USAFA NIGHT payload examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis. Because photosynthesis needs light, which requires spacecraft power to generate, alternatives would reduce energy use.
      The investigation also examines whether using supplements increases plant growth on the space station, which has been observed in preflight testing on Earth. In future plant production facilities aboard spacecraft or on celestial bodies, supplements could come from available organic materials such as waste.
      Understanding how plants adapt to microgravity could help grow food during long-duration space missions or harsh environments on Earth.
      Atomic Clocks in Space
      An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity.NASA An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity. Results have applications to scientific measurement studies, the search for dark matter, and fundamental physics research that relies on highly accurate atomic clocks in space. The experiment also tests a technology for synchronizing clocks worldwide using global navigation satellite networks.
      Cargo Highlights
      NASA’s SpaceX 32nd commercial resupply mission will carry about 6,700 pounds of cargo to the International Space Station.NASA Hardware
      Launch:
      Catalytic Reactor – The catalytic reactor replacement unit oxidizes volatile organics from the wastewater so they can be removed by the gas separator and ion exchange bed replacement units as part of the station’s water recycling system. This unit failed in orbit and is being returned for analysis and refurbishment. This unit is being launched as an in-orbit spare.
        Food Reach Tool Assembly – An L-shaped, hand-held tool that allows crew members to reach packages in the back of the food warmer without having to insert their hands. This tool is launching to replace a unit in orbit. Reducer Cylinder Assembly – A cylinder tank that provides 15 minutes of oxygen to a crew member in case of an emergency. Launching two units as in-orbit spares. Thermal Expansion Device – A device used to allow for thermal expansion of water within the Hydrogen Dome while it is being removed and replaced. Launching to maintain minimum in-orbit spares. Return:
      Urine Processor Assembly Pressure Control and Pump Assembly – This multi-tube purge pump enables the removal of non-condensable gas and water vapor from the distillation assembly within the greater urine processing assembly subsystem. This unit is returning to the ground for repair and refurbishment in support of the legacy environmental control and life support system fleet. Assembly Contingency Transmitter Receiver Assembly – A part of the S-Band Radio Frequency Group, this assembly is a pressurized enclosure that contains electronics for this upper-level assembly. The Radio Frequency Group is used for command, control, and transmission communication for the space station. It was retrieved by NASA astronauts Suni Williams and Butch Wilmore during US EVA 92 and will return for repair. High Gain Antenna Feed Assembly – Part of the S-Band Radio Frequency Group, this system features a two-axis, gimballed assembly with a pedestal and a large horn antenna. It was retrieved by NASA astronauts Suni Williams and Butch Wilmore during U.S. spacewalk 92 and will return for repair. Low Gain Antenna Sub-Assembly – Part of the S-Band Radio Frequency Group, this sub-assembly consists of a helix antenna that provides a wide field of signal transmission capability. It was retrieved by NASA astronauts Suni Williams and Butch Wilmore during U.S. spacewalk 92 and will return for repair.  Planar Reflector Assembly – With an aluminum base and reflective element, visiting spacecraft reflect a laser to compute relative range, velocity, and attitude to the space station. This broken unit was retrieved and replaced by NASA astronaut Suni Williams during U.S. spacewalk 91 and will return for repair. Multifiltration Bed – Supporting the water processor assembly, this spare unit will continue the International Space Station program’s effort to replace a degraded fleet of units in-orbit that improve water quality through a single bed. This unit will return for refurbishment and re-flight. Watch and Engage
      Live coverage of the launch from NASA Kennedy will air at 3:55 a.m. on NASA+..
      For additional information on the mission, visit: https://www.nasa.gov/mission/nasas-spacex-crs-32/
      View the full article
    • By Space Force
      Senior leaders speak on the distinct roles and responsibilities of the Space Force and USSPACECOM in a fireside chat at Colorado Springs, Colorado.

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Thursday, Nov. 9, 2023, on the company’s 29th commercial resupply services mission for the agency to the International Space Station.SpaceX NASA invites the public to participate in virtual activities ahead of the launch of SpaceX’s 32nd commercial resupply services mission for the agency. NASA and SpaceX are targeting launch at 4:15 a.m. EDT Monday, April 21, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      In addition to food, supplies, and equipment for the crew, the SpaceX Dragon spacecraft will deliver several new experiments, including a demonstration of refined maneuvers for free-floating robots. Dragon also carries an enhanced air quality monitoring system that could protect crew members on exploration missions to the Moon and Mars, and two atomic clocks to examine fundamental physics concepts, such as relativity, and test worldwide synchronization of precision timepieces.
      The public can register to be virtual launch guests and receive curated mission resources, interactive opportunities, timely launch updates, and a mission-specific collectible stamp for their virtual guest passports delivered straight to their inbox after liftoff.
      A new way to collect and share passport stamps has arrived! Receive one for your virtual guest passport and another that is sized perfectly for sharing. Don’t have a passport yet? Print one here and start collecting!
      Learn more about NASA research and activities on the International Space Station at:
      https://www.nasa.gov/station.
      Share
      Details
      Last Updated Apr 16, 2025 EditorJason Costa Related Terms
      Kennedy Space Center Commercial Resupply Get Involved International Space Station (ISS) ISS Research SpaceX Commercial Resupply Virtual Guest Program Explore More
      4 min read Atomic Clock and Plant DNA Research Launching Aboard NASA’s SpaceX CRS-32 Mission 
      NASA’s SpaceX 32nd commercial resupply services mission, scheduled to lift off from the agency’s Kennedy…
      Article 1 day ago 1 min read Why Do We Grow Plants in Space?
      Article 1 day ago 4 min read GLOBE Mission Earth Supports Career Technical Education
      The NASA Science Activation program’s GLOBE Mission EARTH (GME) project is forging powerful connections between…
      Article 5 days ago Keep Exploring Discover Related Topics
      NASA’s SpaceX Crew-10
      The 11th flight of the Dragon spacecraft with people as part of NASA's Commercial Crew Program launched March 14, 2025,…
      International Space Station (ISS) (A)
      The Ocean and Climate Change
      Our ocean is changing. With 70 percent of the planet covered in water, the seas are important drivers of the…
      Our Solar System
      Overview Our planetary system is located in an outer spiral arm of the Milky Way galaxy. We call it the…
      View the full article
  • Check out these Videos

×
×
  • Create New...