Jump to content

Ariane 6 launches LIFI: light-speed secure communications


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA The Apollo 12 spacecraft launches from NASA’s Kennedy Space Center in Florida in this image from Nov. 14, 1969, with astronauts Charles Conrad Jr., Richard F. Gordon Jr., and Alan L. Bean aboard. During liftoff, the Saturn V rocket which carried the Apollo capsule was struck twice by lightning.
      On Nov. 19, 1969, the lunar module landed on the Moon. About three hours after landing, Conrad emerged from the lunar module, becoming the third person to step on the Moon. He was followed by Bean.
      Image credit: NASA
      View the full article
    • By NASA
      Twelve-year-old, Aadya Karthik of Seattle, Washington; nine-year-old, Rainie Lin of Lexington, Kentucky; and eighteen-year-old, Thomas Lui, winners of the 2023-2024 Power to Explore Student Writing Challenge observe testing at a NASA Glenn cleanroom during their prize trip to Cleveland. Credit: NASA NASA’s fourth annual Power to Explore Student Challenge kicked off November 7, 2024. The science, engineering, technology, and mathematics (STEM) writing challenge invites kindergarten through 12th grade students in the United States to learn about radioisotope power systems, a type of nuclear battery integral to many of NASA’s far-reaching space missions.
      Students are invited to write an essay about a new nuclear-powered mission to any moon in the solar system they choose. Submissions are due Jan. 31, 2025.
      With freezing temperatures, long nights, and deep craters that never see sunlight on many of these moons, including our own, missions to them could use a special kind of power: radioisotope power systems. These power systems have helped NASA explore the harshest, darkest, and dustiest parts of our solar system and enabled spacecraft to study its many moons.
      “Sending spacecraft into space is hard, and it’s even harder sending them to the extreme environments surrounding the diverse moons in our solar system,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “NASA’s Power to Explore Student Challenge provides the incredible opportunity for our next generation – our future explorers – to design their own daring missions using science, technology, engineering, and mathematics to explore space and discover new science for the benefit of all, while also revealing incredible creative power within themselves. We cannot wait to see what the students dream up!”
      Entries should detail where students would go, what they would explore, and how they would use radioisotope power systems to achieve mission success in a dusty, dark, or far away moon destination.
      Judges will review entries in three grade-level categories: K-4, 5-8, and 9-12. Student entries are limited to 275 words and should address the mission destination, mission goals, and describe one of the student’s unique powers that will help the mission. 
      One grand prize winner from each grade category will receive a trip for two to NASA’s Glenn Research Center in Cleveland to learn about the people and technologies that enable NASA missions. Every student who submits an entry will receive a digital certificate and an invitation to a virtual event with NASA experts where they’ll learn about what powers the NASA workforce to dream big and explore.
      Judges Needed
      NASA and Future Engineers are seeking volunteers to help judge the thousands of contest entries anticipated submitted from around the country. Interested U.S. residents older than 18 can offer to volunteer approximately three hours to review submissions should register to judge at the Future Engineers website.
      The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
      To learn more about the challenge, visit:
      https://www.nasa.gov/power-to-explore
      -end-
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov


      Kristin Jansen
      Glenn Research Center, Cleveland
      216-296-2203
      kristin.m.jansen@nasa.gov
      Share
      Details
      Last Updated Nov 07, 2024 LocationNASA Headquarters Related Terms
      Opportunities For Students to Get Involved Science Mission Directorate STEM Engagement at NASA View the full article
    • By NASA
      4 Min Read NASA Terminal Transmits First Laser Communications Uplink to Space 
      NASA's LCOT (Low-Cost Optical Terminal) located at the agency's Goddard Space Flight Center in Greenbelt, Md. Credits: NASA NASA’s LCOT (Low-Cost Optical Terminal), a ground station made of modified commercial hardware, transmitted its first laser communications uplink to the TBIRD (TeraByte Infrared Delivery), a tissue box-sized payload formerly in low Earth orbit.
      During the first live sky test, NASA’s LCOT produced enough uplink intensity for the TBIRD payload to identify the laser beacon, connect, and maintain a connection to the ground station for over three minutes. This successful test marks an important achievement for laser communications: connecting LCOT’s laser beacon from Earth to TBIRD required one milliradian of pointing accuracy, the equivalent of hitting a three-foot target from over eight American football fields away.
      The test was one of many laser communications achievements TBIRD made possible during its successful, two-year mission. Prior to its mission completion on Sept. 15, 2024, the payload transmitted at a record-breaking 200 gigabits per second. In an actual use case, TBIRD’s three-minute connection time with LCOT would be sufficient to return over five terabytes of critical science data, the equivalent of over 2,500 hours of high-definition video in a single pass. As the LCOT sky test demonstrates, the ultra-high-speed capabilities of laser communications will allow science missions to maintain their connection to Earth as they travel farther than ever before.
      Measurement data of the power, or “fluency,” of the connection between NASA’s LCOT (Low-Cost Optical Terminal) laser beacon and TBIRD’s (TeraByte Infrared Delivery) receiver provided by Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL). LCOT and TBIRD maintained a sufficient connection for over three minutes — enough time for TBIRD to return over five terabytes of data. NASA/Dave Ryan NASA’s SCaN (Space Communications and Navigation) program office is implementing laser communications technology in various orbits, including the upcoming Artemis II mission, to demonstrate its potential impact in the agency’s mission to explore, innovate, and inspire discovery.
      “Optical, or laser, communications can transfer 10 to 100 times more data than radio frequency waves,” said Kevin Coggins, deputy associate administrator and SCaN program manager. “Literally, it’s the wave of the future, as it’ll enable scientists to realize an ever-increasing amount of data from their missions and will serve as our critical lifeline for astronauts traveling to and from Mars.” 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      A recording of TBIRD’s (TeraByte Infrared Delivery) successful downlink from NASA’s LCOT (Low-Cost Optical Terminal) Wide Field Camera. The light saturation from the downlink caused a secondary reflection in the upper right of the video.NASA Historically, space missions have used radio frequencies to send data to and from space, but with science instruments capturing more data, communications assets must meet increasing demand. The infrared light used for laser communications transmits the data at a shorter wavelength than radio, meaning ground stations on Earth can send and receive more data per second. 
      The LCOT team continues to refine pointing capabilities through additional tests with NASA’s LCRD (Laser Communications Relay Demonstration). As LCOT and the agency’s other laser communications missions continue to reach new milestones in connectivity and accessibility, they demonstrate laser communications’ potential to revolutionize scientists’ access to new data about Earth, our solar system, and beyond. 
      “It’s a testament to the hard work and skill of the entire team,” said Dr. Haleh Safavi, project lead for LCOT. “We work with very complicated and sensitive transmission equipment that must be installed with incredible precision. These results required expeditious planning and execution at every level.” 
      NASA’s LCOT (Low-Cost Optical Terminal) at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, uses slightly modified commercial hardware to reduce the expense of implementing laser communications technology. NASA Experiments like TBIRD and LCRD are only two of SCaN’s multiple in-space demonstrations of laser communications, but a robust laser communications network relies on easily reconfigurable ground stations on Earth. The LCOT ground station showcases how the government and aerospace industry can build and deploy flexible laser communications ground stations to meet the needs of a wide variety of NASA and commercial missions, and how these ground stations open new doors for communications technology and extremely high data volume transmission. 
      NASA’s LCOT is developed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland. TBIRD was developed in partnership with the Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL) in Lexington. TBIRD was flown and operated as a collaborative effort among NASA Goddard; NASA’s Ames Research Center in California’s Silicon Valley; NASA’s Jet Propulsion Laboratory in Southern California; MIT-LL; and Terran Orbital Corporation in Irvine, California. Funding and oversight for LCOT and other laser communications demonstrations comes from the (SCaN) Space Communications and Navigation  program office within the Space Operations Mission Directorate at NASA Headquarters in Washington. 
      About the Author
      Korine Powers
      Senior Writer and Education LeadKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, education and outreach, exploration activities, and more.
      Share
      Details
      Last Updated Oct 09, 2024 EditorKorine PowersContactKatherine Schauerkatherine.s.schauer@nasa.govLocationGoddard Space Flight Center Related Terms
      Space Communications Technology Communicating and Navigating with Missions Goddard Space Flight Center Space Communications & Navigation Program Space Operations Mission Directorate Technology Technology Demonstration View the full article
    • By NASA
      As a radio frequency wireless engineer in NASA’s Johnson Space Center Avionic Systems Division in Houston, Melissa Moreno makes an impact in space exploration while proudly sharing her cultural heritage in the NASA community. 

      Moreno works in the Electronic Systems Test Laboratory, developing communication systems critical to Gateway, NASA’s first lunar-orbiting space station. But her success stretches far beyond the lab.   
      Image courtesy of Melissa Moreno In addition to her technical work, Moreno co-founded Johnson’s Hispanic Employee Resource Group’s mariachi ensemble, Mariachi Celestial. She performs as a violinist and vocalist at employee events and community engagements.  

      “Mariachi is a large part of my culture and identity, and I enjoy sharing it,” said Moreno.
      Melissa Moreno performs with NASA’s Johnson Space Center Hispanic Employee Resource Group mariachi ensemble, Mariachi Celestial, in Houston. Originally from New Mexico, Moreno earned her master’s degree in electrical engineering from New Mexico State University—a milestone she considers her greatest achievement. “I am the only one in my family that has graduated with a master’s in engineering,” she said.  

      Working on Gateway has taken Moreno to various NASA facilities, where she collaborates with engineers across the country to develop the lunar outpost. She also supports communication testing for the International Space Station as needed. “This has been an invaluable experience for me,” said Moreno.  

      Her career has not come without challenges. As a young Hispanic woman in engineering, Moreno has faced self-doubt and the pressure of perfectionism. “I can be very hard on myself,” she said. “While I’ve made progress, I’m still working on overcoming these challenges by thinking positively, believing in myself, and doing my absolute best.” 

      One key lesson she has learned along the way is the importance of adaptability. “There are times when things don’t go as planned, and adapting to such situations is important for continued success,” she said. 
      Melissa Moreno, far left, performs with the Mariachi Celestial at a Cinco de Mayo event in May 2024. Moreno is also a strong advocate for NASA’s diversity, equity, and inclusion initiatives. “NASA should continue to highlight stories that showcase diversity in the workplace because they can inspire current and future underrepresented groups at NASA,” she said.   
      Melissa Moreno hikes in the Wichita Mountains in Oklahoma. Looking ahead, Moreno is excited about NASA’s plans to land the first woman and first person of color on the Moon, Gateway’s orbit around the Moon, and the eventual human landing on Mars.   

      “I hope to pass on dedication and passion for the Artemis campaign,” she said.  
      View the full article
  • Check out these Videos

×
×
  • Create New...