Jump to content

NASA, Boeing to Provide Commercial Crew, Space Station Update


NASA

Recommended Posts

  • Publishers
NASA meatball
NASA logo

Leadership from NASA’s International Space Station and Commercial Crew Programs, as well as Boeing, will participate in a media teleconference at 2 p.m. EDT Friday, June 28.

NASA and Boeing continue to evaluate Starliner’s propulsion system performance before returning from the International Space Station as part of the agency’s Crew Flight Test. The agency also will discuss recent station operations.

Audio of the call will stream live on the agency’s website:

https://www.nasa.gov/nasatv

Participants include:

  • Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate
  • Steve Stich, manager, NASA’s Commercial Crew Program
  • Bill Spetch, operations integration manager, NASA’s International Space Station Program
  • Emily Nelson, chief flight director, NASA’s Johnson Space Center
  • Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing

Media interested in participating must contact the newsroom at NASA’s Johnson Space Center in Houston no later than one hour prior to the start of the call at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online.

As part of NASA’s Commercial Crew Program, NASA astronauts Butch Wilmore and Suni Williams lifted off at 10:52 a.m., June 5, on a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on an end-to-end test of the Starliner system. The crew docked to the forward-facing port of the station’s Harmony module at 1:34 p.m., June 6.

In its 24th year of continuously crewed operations, the space station is a unique scientific platform where crew members conduct experiments across multiple disciplines of research, including Earth and space science, biology, human physiology, physical sciences, and technology demonstrations not possible on Earth. Crews living aboard station are the hands of thousands of researchers on the ground, having conducted more than 3,300 experiments in microgravity. Station is the cornerstone of space commerce, from commercial crew and cargo partnerships to commercial research and national lab research, and lessons learned aboard the International Space Station are helping to pass the torch to future commercial stations.

For more information about the International Space Station, visit:

https://www.nasa.gov/station

-end-

Josh Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov 

Danielle Sempsrott / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov

Leah Cheshier / Sandra Jones
Johnson Space Center, Houston
281-483-5111
leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Moving across a background of stars, the six red dots in this composite picture indicate the location of six sequential detections of the first near-Earth object discovered by NEOWISE after the spacecraft came out of hibernation in 2013: the asteroid 2013 YP139. The inset shows a zoomed-in view of one of the detections.NASA/JPL-Caltech Observed by NASA’s WISE mission, this image shows the entire sky seen in infrared light. Running through the center of the image and seen predominantly in cyan are the stars of the Milky Way. Green and red represent interstellar dust.NASA/JPL-Caltech/UCLA NASA’s near-Earth-object-hunting mission NEOWISE is nearing its conclusion. But its work will carry on with NASA’s next-generation infrared mission: NEO Surveyor.
      After more than 14 successful years in space, NASA’s NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) mission will end on July 31. But while the mission draws to a close, another is taking shape, harnessing experience gained from NEOWISE: NASA’s NEO Surveyor (Near Earth Object Surveyor), the first purpose-built infrared space telescope dedicated to hunting hazardous near-Earth objects. Set for launch in late 2027, it’s a major step forward in the agency’s planetary defense strategy.
      “After developing new techniques to find and characterize near-Earth objects hidden in vast quantities of its infrared survey data, NEOWISE has become key in helping us develop and operate NASA’s next-generation infrared space telescope. It is a precursor mission,” said Amy Mainzer, principal investigator of NEOWISE and NEO Surveyor at the University of California, Los Angeles. “NEO Surveyor will seek out the most difficult-to-find asteroids and comets that could cause significant damage to Earth if we don’t find them first.”
      Seen here in a clean room at the Space Dynamics Laboratory in Logan, Utah, the WISE mission’s telescope is worked on by engineers. Avionics hardware and solar panels would later be attached before the spacecraft’s launch on Dec. 14, 2009. SDL WISE Beginnings
      NEOWISE’s end of mission is tied to the Sun. About every 11 years, our star experiences a cycle of increased activity that peaks during a period called solar maximum. Explosive events, such as solar flares and coronal mass ejections, become more frequent and heat our planet’s atmosphere, causing it to expand. Atmospheric gases, in turn, increase drag on satellites orbiting Earth, slowing them down. With the Sun currently ramping up to predicted maximum levels of activity, and with no propulsion system for NEOWISE to keep itself in orbit, the spacecraft will soon drop too low to be usable.
      The infrared telescope is going out of commission having exceeded scientific objectives for not one, but two missions, beginning as WISE (Wide-field Infrared Survey Explorer).
      Managed by NASA’s Jet Propulsion Laboratory in Southern California, WISE launched in December 2009 with a six-month missionto scan the entire infrared sky. By July 2010, WISE had achieved this with far greater sensitivity than previous surveys, and NASA extended the mission until 2011.
      During this phase, WISE studied distant galaxies, outgassing comets, exploding white dwarf stars, and brown dwarfs. It identified tens of millions of actively feeding supermassive black holes. It also generated data on circumstellar disks — clouds of gas, dust, and rubble spinning around stars — that citizen scientists continue to mine through the Disk Detective project.
      In addition, it excelled at finding main belt asteroids, as well as near-Earth objects, and discovered the first known Earth Trojan asteroid. What’s more, the mission provided a census of dark, faint near-Earth objects that are difficult for ground-based telescopes to detect, revealing that these objects constitute a sizeable fraction of the near-Earth object population.
      Comet NEOWISE was discovered by its namesake mission on March 27, 2020, and became a dazzling celestial object visible in the Northern Hemisphere for several weeks that year. It was one of 25 comets discovered by the mission.SDL/Allison Bills Infrared Heritage
      Invisible to the naked eye, infrared wavelengths are emitted by warm objects. To keep the heat generated by WISE itself from interfering with its infrared observations, the spacecraft relied on cryogenic coolant. By the time the coolant had run out, WISE had mapped the sky twice, and NASA put the spacecraft into hibernation in February 2011.
      Soon after, Mainzer and her team proposed a new mission for the spacecraft: to search for, track, and characterize near-Earth objects that generate a strong infrared signal from their heating by the Sun.
      “Without coolant, we had to find a way to cool the spacecraft down enough to measure infrared signals from asteroids,” said Joseph Masiero, NEOWISE deputy principal investigator and a scientist at IPAC, a research organization at Caltech in Pasadena, California. “By commanding the telescope to stare into deep space for several months, we determined it would radiate only enough heat to reach lower temperatures that would still allow us to acquire high-quality data.” NASA reactivated the mission in 2013 under the Near-Earth Object Observations Program, a precursor to the agency’s current planetary defense program, with the new name NEOWISE.
      By repeatedly observing the sky from low Earth orbit, NEOWISE has made 1.45 million infrared measurements of over 44,000 solar system objects to date. That includes more than 3,000 NEOs, 215 of which the space telescope discovered. Twenty-five of those are comets, among them the famed comet NEOWISE that was visible in the night sky in the summer of 2020.
      “The spacecraft has surpassed all expectations and provided vast amounts of data that the science community will use for decades to come,” said Joseph Hunt, NEOWISE project manager at JPL. “Scientists and engineers who worked on WISE and through NEOWISE also have built a knowledge base that will help inform future infrared survey missions.”
      The space telescope will continue its survey until July 31. Then, on Aug. 8, mission controllers at JPL will send a command that puts NEOWISE into hibernation for the last time. Since its launch, NEOWISE’s orbit has been dropping closer to Earth. NEOWISE is expected to burn up in our planet’s atmosphere sometime between late 2024 and early 2025.
      More About the Mission
      NEOWISE and NEO Surveyor support the objectives of NASA’s Planetary Defense Coordination Office (PDCO) at NASA Headquarters in Washington. The NASA Authorization Act of 2005 directed NASA to discover and characterize at least 90% of the near-Earth objects more than 140 meters (460 feet) across that come within 30 million miles (48 million kilometers) of our planet’s orbit. Objects of this size can cause significant regional damage, or worse, should they impact the Earth.
      JPL manages and operates the NEOWISE mission for PDCO within the Science Mission Directorate. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. Ball Aerospace & Technologies Corp. of Boulder, Colorado, built the spacecraft. Science data processing, archiving, and distribution is done at IPAC at Caltech. Caltech manages JPL for NASA.
      For more information about NEOWISE, visit:
      https://www.nasa.gov/neowise
      NASA’s NEOWISE Celebrates 10 Years, Plans End of Mission Classroom Activity: How to Explore an Asteroid Mission: Near-Earth Object Surveyor Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters, Washington
      202-358-1600 / 202-802-5345
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      2024-094
      Share
      Details
      Last Updated Jul 01, 2024 Related Terms
      NEOWISE Comets Jet Propulsion Laboratory Near-Earth Asteroid (NEA) NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Planetary Defense Planetary Defense Coordination Office WISE (Wide-field Infrared Survey Explorer) Explore More
      4 min read NASA Parachute Sensor Testing Could Make EPIC Mars Landings
      Article 4 days ago 5 min read NASA’s Mars Odyssey Captures Huge Volcano, Nears 100,000 Orbits
      Article 4 days ago 5 min read Detective Work Enables Perseverance Team to Revive SHERLOC Instrument
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NAS visualization & data sciences lead Chris Henze demonstrates the newly upgraded hyperwall visualization system to Ames center director Eugene Tu, deputy center director David Korsmeyer, and High-End Computing Capability manager William Thigpen.NASA/Brandon Torres Navarette In May, the NASA Advanced Supercomputing (NAS) facility, located at NASA’s Ames Research Center in California’s Silicon Valley, celebrated the newest generation of its hyperwall system, a wall of LCD screens that display supercomputer-scale visualizations of the very large datasets produced by NASA supercomputers and instruments. 
      The upgrade is the fourth generation of hyperwall clusters at NAS. The LCD panels provide four times the resolution of the previous system, now spanning across a 300-square foot display with over a billion pixels. The hyperwall is one of the largest and most powerful visualization systems in the world. 
      Systems like the NAS hyperwall can help researchers visualize their data at large scale, across different viewpoints or using different parameters for new ways of analysis. The improved resolution of the new system will help researchers “zoom in” with greater detail. 
      The hyperwall is just one way researchers can utilize NASA’s high-end computing technology to better understand their data. The NAS facility offers world-class supercomputing resources and services customized to meet the needs of about 1,500 users from NASA centers, academia and industry. 
      Share
      Details
      Last Updated Jul 01, 2024 Related Terms
      Ames Research Center Ames Research Center's Science Directorate Explore More
      4 min read Doing More With Less: NASA’s Most Powerful Supercomputer
      Article 2 years ago 5 min read 5 Ways Supercomputing is Key to NASA Mission Success
      Article 2 years ago 4 min read Rocket Exhaust on the Moon: NASA Supercomputers Reveal Surface Effects
      Article 8 months ago Keep Exploring Discover Related Topics
      About Ames
      Technology
      Computing
      Core Area of Expertise: Supercomputing
      View the full article
    • By Space Force
      Lt. Gen. David N. Miller, Jr. and Lt. Gen. Douglas A. Schiess provide their commentary on a new US Space Force Generational Model and the security challenges the U.S. Space Force faces with other nations.

      View the full article
    • By Space Force
      Lt. Gen. David N. Miller, Jr. and Lt. Gen. Douglas A. Schiess provide their commentary on the new U.S. Space Force Generational Model and the security challenges the U.S. Space Force faces with other nations.

      View the full article
    • By Space Force
      The phase, which began July 1, is the third in the Space Force's model for Guardian deployment and in-place employment cycles.
      View the full article
  • Check out these Videos

×
×
  • Create New...