Jump to content

NASA Celebrates 10 Years of Human Spaceflight’s NExT Pioneers


NASA

Recommended Posts

  • Publishers

Experienced spacewalkers, university students, flight controllers, and NASA team members at all stages of their career recently came together at Johnson Space Center’s Neutral Buoyancy Laboratory (NBL) for an anniversary celebration that looked to the future as much as the past. The Office of STEM Engagement’s Micro-g Neutral Buoyancy Experiment Design Teams (Micro-g NExT) marked a decade of inspiring the next generation of space explorers with four days of exciting hands-on experiences and events commemorating those who have shaped the annual challenge.

Students pose at NASA Johnson's neutral Buoyancy Laboratory with the 10-year anniversary logo of Micro0g NExT in front of them.
Students pose at NASA Johnson’s Neutral Buoyancy Laboratory (NBL) before beginning test week with their projects that will benefit future Artemis missions.
Credit: NASA/Bill Stafford

From June 2-5, NASA welcomed 17 student teams from 13 U.S. colleges and universities to the NBL for a once-in-a-lifetime opportunity. The 87 students spent months designing and building devices or tools that could support lunar surface spacewalks and future Artemis missions, earning a chance to test their unique prototypes at the NBL.

Teams chose from four design challenge options – create an anchoring device for a lunar flagpole, design a lunar mapbook, develop a lunar tool carrier, or create a target recognition system camera for post-landing search and rescue operations – and submitted technical proposals for Micro-g NExT staff to review in October 2023. The selected student teams were announced in November and introduced to their mentors in December. Those mentors provided continuous support and expertise as teams manufactured their prototypes, submitted their preliminary design review, and completed initial tests prior to traveling to Houston. Mentors represented Johnson organizations including the Flight Operations Directorate, Extravehicular Activity and Human Surface Mobility Program, Engineering, and the Safety and Mission Assurance Directorate.

Another familiar face at Johnson was involved in the challenge, as well: former NASA astronaut Steve Swanson, who was the Boise State University team’s faculty advisor. Swanson is a three-time spaceflight veteran who completed four spacewalks and logged and a total of 195 days in space, which enabled him to provide the students with valuable design insights.

swanson-micro-g-2.jpg?w=2048
Former NASA astronaut Steve Swanson with members of the Boise State University Micro-g NExT team at the NBL.
NASA/David DeHoyos

Once they arrived at the NBL, students received a pre-test briefing from Flight Director Rebecca Wingfield about best practices for communication from a mission control perspective. She also debriefed with teams to provide students with feedback that enhanced their learning experience and gave them a deeper understanding of their projects’ impact on the Artemis campaign.

A woman talks with a microphone in front of students at NASA's Neutral Buoyancy Laboratory in Houston, Texas.
NASA Flight Director Rebecca Wingfield conducts a pre-test briefing for Micro-g NExT teams.
Credit: NASA/James Blair

NASA astronaut Nicole Mann supported students in the test control room as they underwent testing and were in direct communication with the diver using their prototype in the pool. Mann also conducted a series of post-test debriefs with several teams to give them insight on how their designs were helpful and how they can improve.

An astronaut wearing a blue flight suit laughts with students in a control room with screens showing underwater divers test their tools.
NASA astronaut Nicole Mann in the NBL control room with Micro-g NExT participants.
NASA/James Blair

Students also had the opportunity to participate in a poster session at Johnson’s Teague Auditorium to showcase their products and the process from proposal to completion of testing. Artemis Student Challenge Awards were presented to top teams in three categories – Innovation, Pay it Forward (for community engagement and outreach), and Artemis Educator (for a team’s faculty advisor).

Students gather in a lobby with a large NASA logo in the back to talk to eachother about their projects.
Micro-g NExT poster session in the lobby of Johnson Space Center’s Teague Auditorium.
NASA/David DeHoyos

The whirlwind week kicked off with a reception for Micro-g NExT alumni who were recognized for their past efforts and dedication to space exploration. Certificates of appreciation were given to the program’s ‘pioneers’ – the NASA employees, contractors, and interns who helped to create Micro-g NExT 10 years ago. 

Several tools made by student teams during prior challenges were on display, including a zip-tie cutter designed by the Lone Star College-Cy Fair team in spring 2019 that was used aboard the International Space Station by European Space Agency astronaut Luca Parmitano. Members of that team shared their Micro-g NExT experience with reception attendees. “It gives students the best real-world experience and learning opportunity I have seen,” said James Philippi.

Students and staff also heard from several Micro-g NExT alumni during a Q&A panel. Panelists included Harriet Hunt, CRONUS flight controller trainee; Aaron Simpson, xEMU Portable Life Support System engineer intern; Alexis Vance, environmental systems flight controller; Kim Wright, electrical, mechanical, and external thermal systems engineer; and Sam Whitlock, spaceflight systems engineering intern at Axiom Space. Each shared how Micro-g NExT impacted them personally and professionally, underscoring the long-term value of participating in the challenge and the program’s ability to attract next-generation talent to the agency.

Five people sit at a table in front of students and particiapte in a Q&A session with a microphone.
Micro-g NExT alumni during a Q&A session with this year’s challenge participants and NASA team members.
NASA/James Blair

Adding to this legacy, two of the 2024 Micro-g NExT participants ended their challenge experience by starting work with NASA. Alana Falter from the University of Illinois-Urbana Champaign returned to NASA as a Pathways Intern, and Adrian Garcia from the University of Houston-Clear Lake returned as a contractor with Barrios Technology.

Another nod to the challenge’s impact was a special 10-year patch and logo designed by Justin Robert from the Michoud Assembly Facility through the NASA Spark challenge to commemorate the Micro-g NExT milestone.

10-year anniversary of Micro-g NExT logo.
10-year anniversary of Micro-g NExT logos.
Credit: NASA

“Student design challenges have been a critical pipeline for both NASA internship participants and preparing students to be successful in STEM careers,” said Jamie Semple, NASA activity manager for Micro-g NExT. “By participating in these activities, students have the opportunity to create a product that could be part of spaceflight history, all while building essential skills for the next step in their career.” Semple added, “We also see the challenge’s impact with former participants now becoming our Micro-g NExT challenge owners. These people are now leading the program into the future and continuing the legacy of creating leaders in the STEM workforce and for the NASA community.”

Reflecting on their experience, Smith Juback from Clemson University said working cooperatively with teammates was their favorite part of this design challenge. “We all had different ideas and ways to solve different problems and being able to incorporate everyone’s ideas together made us all smarter in the end,” he said. “I think we all learned so much individually about how to make and design a product, and we grew as people, students, and designers.”

Students from the University of Nebraska-Lincoln team said, “Working with astronauts in a professional environment like the Neutral Buoyancy Laboratory is about precision since time is so valuable and you have to make the most of it. Back at home, we have several hours to test our project and if it breaks it breaks. But in the NBL, we have 12 minutes to run through seven tests. This experience is something you can only get here at Micro-g NExT.”

A woman wearing a shirt that says "dice team" speaks into a control room microphone.
A Micro-g NExT participant directs testing from the NBL control room.
Credit: NASA

After four days of learning, testing, and networking, Micro-g NExT has reached a decade of providing greater knowledge and inspiration to youth across the country. As one of NASA’s Artemis student challenges, Micro-g NExT will continue to offer undergraduate students the opportunity to design and create mission-ready hardware to benefit the future of deep space exploration. Learn more about Micro-g NExT and other Artemis student challenges at https://stem.nasa.gov/artemis/.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Southwest Research Institute of San Antonio to build three coronagraphs for the Lagrange 1 Series project, part of NOAA’s Space Weather Next program.
      Once operational, the coronagraphs will provide critical data to NOAA’s Space Weather Prediction Center, which issues forecasts, warnings, and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems.
      This cost-plus-fixed-fee contract is valued at approximately $60 million, and the anticipated period of performance is from this November through January 2034, concluding after launch of the second coronagraph aboard a NOAA spacecraft. The third coronagraph will be delivered as a flight spare.
      This contract award marks a transfer of coronagraph development from the government to the U.S. commercial sector. The contract scope includes design, analysis, development, fabrication, integration, test, verification, and evaluation of the      coronagraphs; launch support; supply and maintenance of ground support equipment; and support of post-launch instrument operations at the NOAA Satellite Operations Facility. The work will take place at Southwest Research Institute’s facility in San Antonio.
      The coronagraphs will observe the density structure of the Sun’s faint outermost atmosphere — the corona — and will detect Earth-directed coronal mass ejections shortly after they erupt, providing the longest possible lead time for geomagnetic storm watches. With this forewarning, public and private organizations affected by space weather can take actions to protect their assets. The coronagraphs will also provide data continuity from the Space Weather follow-on Lagrange 1 mission.
      NASA and NOAA oversee the development, launch, testing and operation of all the satellites in the project. NOAA is the program owner providing the requirements and funding along with managing the program, operations, data products, and dissemination to users. NASA and its commercial partners develop and build the instruments, spacecraft, and provide launch services on behalf of NOAA.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      757-824-2958
      jeremy.l.eggers@nasa.gov
      View the full article
    • By NASA
      Johnson Space Center Vibration Test FacilityNASA Nov. 14, 2024
      NASA Johnson Invites Proposals to Lease Vibration Test Facility
      NASA’s Johnson Space Center is seeking proposals for the use of its historic, but underused, Vibration and Acoustic Test Facility. Prospective tenants must submit facility walk-through requests by Monday, Nov. 18.
      Final proposals are due by 12 p.m. EST Monday, Dec. 16, and must promote activities that will build, expand, modernize, or operate aerospace-related capabilities at NASA Johnson and help preserve the historic and iconic building through preservation and adaptive reuse.
      NASA plans to sign a National Historic Preservation Act (NHPA) lease agreement for the facility, also known as Building 49, for a five-year base period and one five-year extension to be negotiated between NASA and the tenant. To request a walk-through, send an email to hq-realestate@mail.nasa.gov.
      “This historic facility has been used for decades to ensure the success and safety of all human spaceflight missions by putting engineering designs and hardware to the ultimate stress tests,” said NASA Johnson Director Vanessa Wyche. “For more than 60 years, NASA Johnson has been the hub of human space exploration and this agreement will be a vital part of the center’s efforts to develop a robust and durable space economy that refines our understanding of the solar system and space exploration.”
      All proposals must adhere to the guidelines detailed in the Agency Announcement for Proposals describing concept plans for development of the property, including any modifications proposed to the building; a statement of financial capability to successfully achieve and sustain operations, demonstrated experience with aerospace-related services or other space-related activities, and a detailed approach to propelling the space economy.
      The nine-story building complex has a gross square footage of 62,737 square feet and consists of a north wing measuring 62 feet long, 268 feet wide and 106 feet tall, and a central wing about 64 feet long and 115 feet wide. Building 49 currently houses five laboratories, including the General Vibration Laboratory, Modal Operations Laboratory, Sonic Fatigue Laboratory, Spacecraft Acoustic Laboratory, and Spacecraft Vibration Laboratory. The south administrative portion of the building is not included in the property offered for lease. 
      As the home of Mission Control Center for the agency’s human space missions, astronaut training, robotics, human health and space medicine, NASA Johnson leads the way for the human exploration. Leveraging its unique role and location, the center is developing multiple lease agreements, including the recently announced Exploration Park, to sustain its key role in helping the human spaceflight community foster a robust space.
      In the coming years, NASA and its academic, commercial, and international partners will see the completion of the International Space Station Program, the commercial development of low Earth orbit, and the first human Artemis campaign missions establishing sustainable human presence on the Moon in preparation for human missions to Mars.
      Johnson already is leading the commercialization of space with the commercial cargo and crew programs and private astronaut missions to the space station. The center also is supporting the development of commercial space stations in low Earth orbit, and lunar-capable commercial spacesuits and lunar landers that will be provided as services to both NASA and the private sector to accelerate human access to space. Through the development of Exploration Park, the center will broaden the scope of the human spaceflight community that is tackling the many difficult challenges ahead.
      Learn more about NASA Johnson’s efforts to collaborate with industry partners:
      https://www.nasa.gov/johnson/frontdoor
      -end-
      Kelly Humphries
      Johnson Space Center, Houston
      281-483-5111
      kelly.o.humphries@nasa.gov
      View the full article
    • By NASA
      In the unforgiving lunar environment, the possibility of an astronaut crewmember becoming incapacitated due to unforeseen circumstances (injury, medical emergency, or a mission-related accident) is a critical concern, starting with the upcoming Artemis III mission, where two astronaut crewmembers will explore the Lunar South Pole. The Moon’s surface is littered with rocks ranging from 0.15 to 20 meters in diameter and craters spanning 1 to 30 meters wide, making navigation challenging even under optimal conditions. The low gravity, unique lighting conditions, extreme temperatures, and availability of only one person to perform the rescue, further complicate any rescue efforts. Among the critical concerns is the safety of astronauts during Extravehicular Activities (EVAs). If an astronaut crewmember becomes incapacitated during a mission, the ability to return them safely and promptly to the human landing system is essential. A single crew member should be able to transport an incapacitated crew member distances up to 2 km and a slope of up to 20 degrees on the lunar terrain without the assistance of a lunar rover. This pressing issue opens the door for innovative solutions. We are looking for a cutting-edge design that is low in mass and easy to deploy, enabling one astronaut crewmember to safely transport their suited (343 kg (~755lb)) and fully incapacitated partner back to the human landing system. The solution must perform effectively in the Moon’s extreme South Pole environment and operate independently of a lunar rover. Your creativity and expertise could bridge this critical gap, enhancing the safety measures for future lunar explorers. By addressing this challenge, you have the opportunity to contribute to the next “giant leap” in human space exploration.
      Award: $45,000 in total prizes
      Open Date: November 14, 2024
      Close Date: January 23, 2025
      For more information, visit: https://www.herox.com/NASASouthPoleSafety
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The laser that transmits between NASA’s Psyche spacecraft and Earth-based observatories for the Deep Space Optical Communications experiment successfully reaches its target thanks, in part, to a vibration isolation platform developed by Controlled Dynamics Inc., and supported by several Space Technology Mission Directorate programs. NASA/JPL-Caltech One year ago today, the future of space communications arrived at Earth as a beam of light from a NASA spacecraft nearly 10 million miles away. That’s 40 times farther than our Moon. That’s like using a laser pointer to track a moving dime from a mile away. That’s pretty precise.
      That laser — transmitted from NASA’s DSOC (Deep Space Optical Communications) technology demonstration — has continued to hit its target on Earth from record-breaking distances.
      “NASA’s Deep Space Optical Communications features many novel technologies that are needed to precisely point and track the uplink beacon and direct the downlink laser,” said Bill Klipstein, DSOC project manager at NASA’s Jet Propulsion Laboratory in Southern California.
      One of the technologies aiding that extremely precise pointing was invented by a small business and fostered by NASA for more than a decade.
      Whole Lotta Shakin’ Going On (Not!)
      Part of the challenge with the precision pointing needed for DSOC was isolating the laser from the spacecraft’s vibrations, which would nudge the beam off target. Fortunately for NASA, Controlled Dynamics Inc. (CDI), in Huntington Beach, California, offered a solution to this problem.
      The company had a platform designed to isolate orbiting experiments from vibrations caused by their host spacecraft, other payloads, crew movements, or even their own equipment. Just as the shocks on a car provide a smoother ride, the struts and actuators on CDI’s vibration isolation platform created a stable setting for delicate equipment.
      This idea needed to be developed and tested first to prove successful.
      The Path to Deep Space Success
      NASA’s Space Technology Mission Directorate started supporting the platform’s development in 2012 under its Game Changing Development program with follow-on support from the SBIR (Small Business Innovation Research) program. The technology really began to take off — pun intended — under NASA’s Flight Opportunities program. Managed out of NASA’s Armstrong Flight Research Center in Edwards, California, Flight Opportunities rapidly demonstrates promising technologies aboard suborbital rockets and other vehicles flown by commercial companies.
      Early flight tests in 2013 sufficiently demonstrated the platform’s performance, earning CDI’s technology a spot on the International Space Station in 2016. But the flight testing didn’t end there. A rapid series of flights with Blue Origin, UP Aerospace, and Virgin Galactic put the platform through its paces, including numerous boosts and thruster firings, pyrotechnic shocks, and the forces of reentry and landing.
      “Flight Opportunities was instrumental in our development,” said Dr. Scott Green, CDI’s co-founder and the platform’s principal investigator. “With five separate flight campaigns in just eight months, those tests allowed us to build up flight maturity and readiness so we could transition to deep space.”
      The vibration isolation platform developed by Controlled Dynamics Inc., and used on the Deep Space Optical Communications experiment conducted numerous tests through NASA’s Flight Opportunities program, including this flight aboard Virgin Galactic’s VSS Unity in February 2019. Virgin Galactic The culmination of NASA’s investments in CDI’s vibration isolation platform was through its Technology Demonstration Missions program, which along with NASA’s SCaN (Space Communications and Navigation) program supported NASA’s Deep Space Optical Communications.
      On Oct. 13, 2023, DSOC launched aboard the Psyche spacecraft, a mission managed by JPL. The CDI isolation platform provided DSOC with the active stabilization and precision pointing needed to successfully transmit a high-definition video of Taters the cat and other sample data from record-breaking distances in deep space.
      “Active stabilization of the flight laser transceiver is required to help the project succeed in its goal to downlink high bandwidth data from millions of miles,” said Klipstein. “To do this, we need to measure our pointing and avoid bumping into the spacecraft while we are floating. The CDI struts gave us that capability.”
      The Deep Space Optical Communications technology demonstration’s flight laser transceiver is shown at NASA’s Jet Propulsion Laboratory in Southern California in April 2021. The transceiver is mounted on an assembly of struts and actuators — developed by Controlled Dynamics Inc. — that stabilizes the optics from spacecraft vibrations. Several Space Technology Mission Directorate programs supported the vibration isolation technology’s development. NASA/JPL-Caltech Onward Toward Psyche
      The Psyche spacecraft is expected to reach its namesake metal-rich asteroid located between Mars and Jupiter by August 2029. In the meantime, the DSOC project team is celebrating recognition as one of TIME’s Inventions of 2024 and expects the experiment to continue adding to its long list of goals met and exceeded in its first year.
      By Nancy Pekar
      NASA’s Flight Opportunities Program
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Deep Space Optical Communications (DSOC)
      Game Changing Development
      Flight Opportunities
      Share
      Details
      Last Updated Nov 14, 2024 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Armstrong Flight Research Center Deep Space Optical Communications (DSOC) Flight Opportunities Program Game Changing Development Program Jet Propulsion Laboratory Psyche Mission Small Business Innovation Research / Small Business Space Communications & Navigation Program Technology Technology Demonstration Missions Program View the full article
    • By NASA
      NASA The Apollo 12 spacecraft launches from NASA’s Kennedy Space Center in Florida in this image from Nov. 14, 1969, with astronauts Charles Conrad Jr., Richard F. Gordon Jr., and Alan L. Bean aboard. During liftoff, the Saturn V rocket which carried the Apollo capsule was struck twice by lightning.
      On Nov. 19, 1969, the lunar module landed on the Moon. About three hours after landing, Conrad emerged from the lunar module, becoming the third person to step on the Moon. He was followed by Bean.
      Image credit: NASA
      View the full article
  • Check out these Videos

×
×
  • Create New...