Jump to content

40 Years Ago: STS-41D – First Space Shuttle Launch Pad Abort


Recommended Posts

  • Publishers
Posted

In 1983, NASA received delivery of Discovery, the third space qualified vehicle in the agency’s space shuttle fleet. During the launch attempt for the STS-41D mission on June 26, 1984, Discovery’s onboard computers halted the countdown four seconds before liftoff, and after two of its main engines had already ignited. The six astronauts safely egressed the orbiter. This first on-the-pad abort of the shuttle program required the vehicle’s return to its assembly building for replacement of the faulty engine that caused the shutdown. The resulting two-month delay caused a shuffling of the mission’s payloads, but Discovery finally lifted off on Aug. 30, and the astronauts completed a successful six-day mission, deploying three commercial satellites, testing a new solar array, and conducting a commercial biotechnology experiment.

Space shuttle Discovery rolls out of Rockwell’s Palmdale facility Discovery atop the Shuttle Carrier Aircraft during the cross-country ferry flight Discovery arrives at NASA’s Kennedy Space Center in Florida
Left: Space shuttle Discovery rolls out of Rockwell’s Palmdale facility. Middle: Discovery atop the Shuttle Carrier Aircraft during the cross-country ferry flight. Right: Discovery arrives at NASA’s Kennedy Space Center in Florida.

Discovery rolled out of Rockwell International’s plant in Palmdale, California, on Oct. 16, 1983. Five of the six crew members assigned to its first flight attended the ceremony. Workers trucked Discovery overland from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base (AFB). Discovery arrived at NASA’s Kennedy Space Center (KSC) on Nov. 9 after a cross-country ferry flight from Edwards, following a two-day stopover at Vandenberg Air Force, now Space Force, Base in California, atop the Shuttle Carrier Aircraft, a modified Boeing 747. Discovery, named after several historical ships of exploration, incorporated manufacturing lessons learned from the first orbiters as well as through the use of more advanced materials. The new vehicle weighed nearly 8,000 pounds less than its sister ship Columbia and 700 pounds less than Challenger.

The STS-41D crew patch The STS-41D crew of R. Michael “Mike” Mullane, front row left, Steven A. Hawley, Henry W. “Hank” Hartsfield, and Michael D. Coats; and Charles D. Walker, back row left, and Judith A. Resnik
Left: The STS-41D crew patch. Right: The STS-41D crew of R. Michael “Mike” Mullane, front row left, Steven A. Hawley, Henry W. “Hank” Hartsfield, and Michael D. Coats; and Charles D. Walker, back row left, and Judith A. Resnik.

To fly Discovery’s first flight, originally designated STS-12 and later renamed STS-41D, in February 1983 NASA assigned Commander Henry W. Hartsfield, a veteran of STS-4, and first-time flyers Pilot Michael L. Coats, and Mission Specialists R. Michael Mullane, Steven A. Hawley, and Judith A. Resnik, all from the 1978 class of astronauts. In May 1983, NASA announced the addition of Charles D. Walker, an employee of the McDonnell Douglas Corporation, to the crew, flying as the first commercial payload specialist. He would operate the company’s Continuous Flow Electrophoresis System (CFES) experiment. The mission’s primary payloads included the Leasat-1 (formerly known as Syncom IV-1) commercial communications satellite and OAST-1, three experiments from NASA’s Office of Aeronautics and Space Technology, including the Solar Array Experiment, a 105-foot long lightweight deployable and retractable solar array.

Workers in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida lift Discovery to mate it with its external tank and solid rocket boosters Initial rollout of Discovery from the VAB to Launch Pad 39A on May 19, 1984 The Flight Readiness Firing on June 2
Left: Workers in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida lift Discovery to mate it with its external tank and solid rocket boosters. Middle: Initial rollout of Discovery from the VAB to Launch Pad 39A on May 19, 1984. Right: The Flight Readiness Firing on June 2.

The day after its arrival at KSC, workers towed Discovery from the SLF to the Orbiter Processing Facility (OPF) to being preparing it for its first space flight. Between Dec. 9, 1983, and Jan. 10, 1984, it entered temporary storage in the Vehicle Assembly Building (VAB) to allow postflight processing of Columbia in the OPF following STS-9. Workers returned Discovery to the OPF for final processing, towing it to the VAB on May 12 for mating with its External Tank (ET) and Solid Rocket Boosters (SRBs). The completed stack rolled out to Launch Pad 39A on May 19. On June 2, engineers successfully completed an 18-second Flight Readiness Firing of the shuttle main engines. Post test inspections revealed a debonding of a thermal shield in main engine number 1’s combustion chamber, requiring its replacement at the pad. The work pushed the planned launch date back three days to June 25.

The June 26 launch abort Discovery’s three main engines hours after the launch abort
Left: The June 26 launch abort. Right: Discovery’s three main engines hours after the launch abort.

The failure of the shuttle’s backup General Purpose Computer (GPC) caused a one-day delay of the first launch attempt on June 25. On June 26, the countdown proceeded smoothly and at T minus 6.6 seconds the orbiter’s GPCs began the serial ignition sequence of the three main engines. Normally, the three engines ignite at 0.12-second intervals to ease stress on the system and to allow onboard computers to diagnose any problems. Engines number 2 and 3, forming the base of the triangle closest to the body flap, ignited as planned, but engine number 1 at the apex of the triangle and nearest the vertical tail, did not ignite at all. This caused the Redundant Set Launch Sequencer (RSLS) to shut the two working engines down, calling an abort to the countdown at T minus 4 seconds. To ease the tension, Hawley reportedly said, “Gee, I thought we’d be a little higher at main engine cutoff.” The fact that engine number 1 had never ignited caused some momentary confusion as displays showed that the RSLS had not shut it down. A single engine still burning with the shuttle still on the pad would have led to a disaster. Once controllers and the onboard crew realized what had actually happened, they calmed down somewhat. What no one realized at the time is that a hydrogen fire, invisible to the naked eye, had broken out at the aft end of the orbiter. Had the crew evacuated at that time, they would have run through the invisible flames. The pad’s fire suppression system came on to deal with the fire, and when the crew did finally egress the shuttle, they received a good dousing of water. The crew returned safely, if a little drenched, to crew quarters. After ground teams assessed the cause of the abort, they made the decision to roll the stack back to the VAB, demate Discovery from the ET and SRBs and tow it back to the OPF. Workers replaced the faulty engine, and Discovery rolled back out to the launch pad on Aug. 9 for another launch attempt 20 days later, delayed by one day due to a software issue, and finally on Aug. 30, Discovery roared off its launch pad on a pillar of flame and within 8 minutes, NASA’s newest orbiter reached low Earth orbit.

Gemini VI launch pad abort in December 1965 Gemini VI crew of Thomas P. Stafford, left, and Walter M. Schirra
Left: Gemini VI launch pad abort in December 1965. Right: Gemini VI crew of Thomas P. Stafford, left, and Walter M. Schirra.

Although the first on the pad abort of the space shuttle program, the June 1984 attempt to launch Discovery on STS-41D represented the second such incident in the American human spaceflight program. The dubious honor of the first on the pad abort belongs to Gemini VI. On Dec. 12, 1965, astronauts Walter M. Schirra and Thomas P. Stafford strapped into the spacecraft for their second launch attempt to rendezvous with Gemini VII. The countdown clock ticked down to zero, and the Titan-II rocket’s first stage engines ignited. And shut off after just 1.2 seconds. Although the mission clock aboard the spacecraft had started, the rocket had not lifted off, and Schirra made the split-second decision not to eject himself and Stafford from the spacecraft. Engineers later traced the cause of the abort to a dust cap inadvertently left in the engine compartment. After workers took care of that issue, Schirra and Stafford tried to launch again on Dec. 15, and the third time proved to be the charm. 

STS-51F in August 1985 STS-55 in March 1993 STS-51 in August 1993 STS-68 in August 1994
Four space shuttle on-the-pad aborts. STS-51F in August 1985, left, STS-55 in March 1993, STS-51 in August 1993, and STS-68 in August 1994.

In the 10 years following the June 1984 abort, four additional shuttle launch attempts ended with an RSLS abort after at least one main engine had ignited.

July 12, 1985, STS-51F space shuttle Challenger

The RSLS executed a shutdown at T minus 3 seconds, after all three main engines had ignited, because the number two main engine’s chamber coolant valve did not close as rapidly as needed for startup. Investigations revealed a faulty sensor as the real culprit, and workers replaced it at the pad. Challenger launched successfully on July 29, but during ascent engine number 1 shut down, the only inflight failure of a main engine, resulting in the only abort to orbit of the program. Although the shuttle achieved a slightly lower than planned orbit, the mission met most of its science objectives.

March 22, 1993, STS-55 space shuttle Columbia

Following a trouble-free countdown, Columbia’s three main engines came to life at as planned, but three seconds later, the RSLS shut them all down when it detected that engine number 3 had not come up to full power. A tiny fragment of rubber caused a valve in the liquid oxygen system to leak, preventing the engine from fully starting. Columbia borrowed three main engines from Endeavour, and STS-55 took off on April 26 to carry out its German Spacelab-D2 mission.

Aug. 12, 1993, STS-51 space shuttle Discovery

After a trouble-free preflight processing and countdown, Discovery’s three main engines ignited as planned at T minus 6.6 seconds. Three seconds later, all three engines shut down. Investigation revealed the cause as a faulty sensor that monitors fuel flow through main engine number 2. Workers replaced all three engines at the pad, and Discovery took off on Sept. 12 to carry out its mission.

Aug. 18, 1994, STS-68 space shuttle Endeavour

Following a smooth countdown, Endeavour’s three main engines began their startup sequence at T minus 6.6 seconds. The GLS computers detected a problem with the No. 3 main engine’s High Pressure Oxidizer Turbine. One of its sensors detected a dangerously high discharge temperature, exceeding the rules of the Launch Commit Criteria, and Endeavour’s computers halted the countdown a mere 1.9 seconds before liftoff. Workers rolled Endeavour back to the VAB, replacing its three main engines with ones borrowed from Atlantis. STS-68 finally took off on Sept. 30 and successfully completed its radar mapping mission. NASA astronaut Daniel W. Bursch holds the distinction as the only person to have experienced two on-the-pad aborts, as he served as a mission specialist on both STS-51 and STS-68.

The lessons learned from these on-the-pad abort experiences can inform current and future programs. For example, the Space Launch System (SLS) uses main engines leftover from the space shuttle program to power its booster stage. And operationally, other launcher systems can learn from these experiences and safely manage similar future events.

Read recollections of the STS-41D mission by Hartsfield, Coats, Mullane, Hawley, and Walker in their oral histories with the JSC History Office.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      NASA / SPACEX CRS-23 ISS RESUPPLY LAUNCH LIVE
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      5 Min Read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      NASA’s X-59 quiet supersonic research aircraft is seen at dawn with firetrucks and safety personnel nearby during a hydrazine safety check at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. The operation highlights the extensive precautions built into the aircraft’s safety procedures for a system that serves as a critical safeguard, ensuring the engine can be restarted in flight as the X-59 prepares for its first flight. Credits: Lockheed Martin As NASA’s one-of-a-kind X-59 quiet supersonic research aircraft approaches first flight, its team is mapping every step from taxi and takeoff to cruising and landing – and their decision-making is guided by safety.
      First flight will be a lower-altitude loop at about 240 mph to check system integration, kicking off a phase of flight testing focused on verifying the aircraft’s airworthiness and safety. During subsequent test flights, the X-59 will go higher and faster, eventually exceeding the speed of sound. The aircraft is designed to fly supersonic while generating a quiet thump rather than a loud sonic boom.
      To help ensure that first flight – and every flight after that – will begin and end safely, engineers have layered protection into the aircraft.
      The X-59’s Flight Test Instrumentation System (FTIS) serves as one of its primary record keepers, collecting and transmitting audio, video, data from onboard sensors, and avionics information – all of which NASA will track across the life of the aircraft.
      “We record 60 different streams of data with over 20,000 parameters on board,” said Shedrick Bessent, NASA X-59 instrumentation engineer. “Before we even take off, it’s reassuring to know the system has already seen more than 200 days of work.”
      Through ground tests and system evaluations, the system has already generated more than 8,000 files over 237 days of recording. That record provides a detailed history that helps engineers verify the aircraft’s readiness for flight.
      Maintainers perform a hydrazine safety check on the agency’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, and is one of several safety features being validated ahead of the aircraft’s first flight.Credits: Lockheed Martin “There’s just so much new technology on this aircraft, and if a system like FTIS can offer a bit of relief by showing us what’s working – with reliability and consistency – that reduces stress and uncertainty,” Bessent said. “I think that helps the project just as much as it helps our team.”
      The aircraft also uses a digital fly-by-wire system that will keep the aircraft stable and limit unsafe maneuvers. First developed in the 1970s at NASA’s Armstrong Flight Research Center in Edwards, California, digital fly-by-wire replaced how aircraft were flown, moving away from traditional cables and pulleys to computerized flight controls and actuators.
      On the X-59, the pilot’s inputs – such as movement of the stick or throttle – are translated into electronic signals and decoded by a computer. Those signals are then sent through fiber-optic wires to the aircraft’s surfaces, like its wings and tail.
      Additionally, the aircraft uses multiple computers that back each other up and keep the system operating. If one fails, another takes over. The same goes for electrical and hydraulic systems, which also have independent backup systems to ensure the aircraft can fly safely.
      Onboard batteries back up the X-59’s hydraulic and electrical systems, with thermal batteries driving the electric pump that powers hydraulics. Backing up the engine is an emergency restart system that uses hydrazine, a highly reactive liquid fuel. In the unlikely event of a loss of power, the hydrazine system would restart the engine in flight. The system would help restore power so the pilot could stabilize or recover the aircraft.
      Maintainers perform a hydrazine safety check on NASA’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, which is one of several safety features being validated ahead of the aircraft’s first flight. Credits: Lockheed Martin Protective Measures
      Behind each of these systems is a team of engineers, technicians, safety and quality assurance experts, and others. The team includes a crew chief responsible for maintenance on the aircraft and ensuring the aircraft is ready for flight.
      “I try to always walk up and shake the crew chief’s hand,” said Nils Larson, NASA X-59 lead test pilot. “Because it’s not your airplane – it’s the crew chief’s airplane – and they’re trusting you with it. You’re just borrowing it for an hour or two, then bringing it back and handing it over.”
      Larson, set to serve as pilot for first flight, may only be borrowing the aircraft from the X-59’s crew chiefs – Matt Arnold from X-59 contractor Lockheed Martin and Juan Salazar from NASA – but plenty of the aircraft’s safety systems were designed specifically to protect the pilot in flight.
      The X-59’s life support system is designed to deliver oxygen through the pilot’s mask to compensate for the decreased atmospheric pressure at the aircraft’s cruising altitude of 55,000 feet – altitudes more than twice as high as that of a typical airliner. In order to withstand high-altitude flight, Larson will also wear a counter-pressure garment, or g-suit, similar to what fighter pilots wear.
      In the unlikely event it’s needed, the X-59 also features an ejection seat and canopy adapted from a U.S. Air Force T-38 trainer, which comes equipped with essentials like a first aid kit, radio, and water. Due to the design, build, and test rigor put into the X-59, the ejection seat is a safety measure.
      All these systems form a network of safety, adding confidence to the pilot and engineers as they approach to the next milestone – first flight.
      “There’s a lot of trust that goes into flying something new,” Larson said. “You’re trusting the engineers, the maintainers, the designers – everyone who has touched the aircraft. And if I’m not comfortable, I’m not getting in. But if they trust the aircraft, and they trust me in it, then I’m all in.”
      Share
      Details
      Last Updated Sep 12, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Ames Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations
      Article 20 minutes ago 3 min read NASA, Embry-Riddle Enact Agreement to Advance Research, Educational Opportunities
      Article 24 hours ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care  
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA’s Northrop Grumman Commercial Resupply Services 23 Launch
    • By NASA
      Artemis II NASA astronauts (left to right) Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen stand in the white room on the crew access arm of the mobile launcher at Launch Pad 39B as part of an integrated ground systems test at Kennedy Space Center in Florida on Wednesday, Sept. 20, 2023. The test ensures the ground systems team is ready to support the crew timeline on launch day.NASA/Frank Michaux With Artemis II, NASA is taking the science of living and working in space beyond low Earth orbit. While the test flight will help confirm the systems and hardware needed for human deep space exploration, the crew also will be serving as both scientists and volunteer research subjects, completing a suite of experiments that will allow NASA to better understand how human health may change in deep space environments. Results will help the agency build future interventions, protocols, and preventative measures to best protect astronauts on future missions to the lunar surface and to Mars.

      Science on Artemis II will include seven main research areas:

      ARCHeR: Artemis Research for Crew Health and Readiness 

      NASA’s Artemis II mission provides an opportunity to explore how deep space travel affects sleep, stress, cognition, and teamwork — key factors in astronaut health and performance. While these effects are well-documented in low Earth orbit, they’ve never been fully studied during lunar missions.

      Artemis II astronauts will wear wristband devices that continuously monitor movement and sleep patterns throughout the mission. The data will be used for real-time health monitoring and safety assessments, while pre- and post-flight evaluations will provide deeper insights into cognition, behavior, sleep quality, and teamwork in the unique environment of deep space and the Orion spacecraft.

      The findings from the test flight will inform future mission planning and crew support systems, helping NASA optimize human performance for the next era of exploration on the Moon and Mars.

      Immune Biomarkers

      Saliva provides a unique window into how the human immune system functions in a deep space environment. Tracing changes in astronauts’ saliva from before, during, and after the mission will enable researchers to investigate how the human body responds to deep space in unprecedented ways.

      Dry saliva will be collected before, during, and after the mission. It will be blotted onto specialized paper in pocket-sized booklets since equipment needed to preserve wet spit samples in space – including refrigeration – will not be available due to volume constraints. To augment that information, liquid saliva and blood samples will be collected before and after the mission.  
      NASA Astronaut Randy Bresnik prepares to collect a dry saliva sample aboard the International Space Station. The process, which helps scientists investigate how the immune system is affected by spaceflight and will be part of the Artemis II mission, involves blotting saliva onto special paper that’s stored in pocket-sized booklets.Credit: NASA With these wet and dry saliva samples, scientists will gain insights into how the astronauts’ immune systems are affected by the increased stresses of radiation, isolation, and distance from Earth during their deep space flight. They also will examine whether otherwise dormant viruses are reactivated in space, as has been seen previously on the International Space Station with viruses that can cause chickenpox and shingles.

      The information gathered from this study, when combined with data from other missions, will help researchers develop ways to keep crew members safe and healthy as we explore farther and travel for longer periods on deep space missions.

      AVATAR: A Virtual Astronaut Tissue Analog Response

      AVATAR is another important component of NASA’s strategy to gain a holistic understanding of how the deep space environment affects humans. Scientists plan to use organ-on-a-chip technology during Artemis II, marking the first time these devices will be used beyond the Van Allen belts.

      Roughly the size of a USB thumb drive, the chips will measure how individual astronauts respond to deep space stressors, including extreme radiation and microgravity. The organ chips will contain cells developed from preflight blood donations provided by crew members to create miniature stand-ins, or “avatars,” of their bone marrow. Bone marrow plays a vital role in the immune system and is particularly sensitive to radiation, which is why scientists selected it for this study.
      An organ chip for conducting bone marrow experiments in space. Credit: Emulate
      A key goal for this research is to validate whether organ chips can serve as accurate tools for measuring and predicting human responses to stressors. To evaluate this, scientists will compare AVATAR data with space station findings, as well as with samples taken from the crew before and after flight.

      AVATAR could inform measures to ensure crew health on future deep space missions, including personalizing medical kits to each astronaut. For citizens on Earth, it could lead to advancements in individualized treatments for diseases such as cancer.

      AVATAR is a demonstration of the power of public-private partnerships. It’s a collaboration between government agencies and commercial space companies: NASA, National Center for Advancing Translational Sciences within the National Institutes of Health, Biomedical Advanced Research and Development Authority, Space Tango, and Emulate.

      Artemis II Standard Measures

      The crew also will become the first astronauts in deep space to participate in the Spaceflight Standard Measures study, an investigation that’s been collecting data from participating crew members aboard the space station and elsewhere since 2018. The study aims to collect a comprehensive snapshot of astronauts’ bodies and minds by gathering a consistent set of core measurements of physiological response.

      The crew will provide biological samples including blood, urine, and saliva for evaluating nutritional status, cardiovascular health, and immunological function starting about six months before their launch. The crew also will participate in tests and surveys evaluating balance, vestibular function, muscle performance, changes in their microbiome, as well as ocular and brain health. While in space, data gathering will include an assessment of motion sickness symptoms. After landing, there will be additional tests of head, eye, and body movements, among other functional performance tasks. Data collection will continue for a month after their return.

      All this information will be available for scientists interested in studying the effects of spaceflight via request to NASA’s Life Sciences Data Archive. The results from this work could lead to future interventions, technologies, and studies that help predict the adaptability of crews on a Mars mission.

      Radiation Sensors Inside Orion

      During the uncrewed Artemis I mission, Orion was blanketed in 5,600 passive and 34 active radiation sensors. The information they gathered assured researchers Orion’s design can provide protection for crew members from hazardous radiation levels during lunar missions. That doesn’t mean that scientists don’t want more information, however.

      Similar to Artemis I, six active radiation sensors, collectively called the Hybrid Electronic Radiation Assessors, will be deployed at various locations inside the Orion crew module. Crew also will wear dosimeters in their pockets. These sensors will provide warnings of hazardous radiation levels caused by space weather events made by the Sun. If necessary, this data will be used by mission control to drive decisions for the crew to build a shelter to protect from radiation exposure due to space weather. 

      Additionally, NASA has again partnered the German Space Agency DLR for an updated model of their M-42 sensor – an M-42 EXT – for Artemis II. The new version offers six times more resolution to distinguish between different types of energy, compared to the Artemis I version. This will allow it to accurately measure the radiation exposure from heavy ions which are thought to be particularly hazardous for radiation risk. Artemis II will carry four of the monitors, affixed at points around the cabin by the crew.

      Collectively, sensor data will paint a full picture of radiation exposures inside Orion and provide context for interpreting the results of the ARCHeR, AVATAR, Artemis II Standard Measures, and Immune Biomarkers experiments.

      Lunar Observations Campaign

      The Artemis II crew will take advantage of their location to explore the Moon from above. As the first humans to see the lunar surface up close since 1972, they’ll document their observations through photographs and audio recordings to inform scientists’ understanding of the Moon and share their experience of being far from Earth. It’s possible the crew could be the first humans to see certain areas of the Moon’s far side, though this will depend on the time and date of launch, which will affect which areas of the Moon will be illuminated and therefore visible when the spacecraft flies by.

      Spacecraft such as NASA’s Lunar Reconnaissance Orbiter have been surveying and mapping the Moon for decades, but Artemis II provides a unique opportunity for humans to evaluate the lunar surface from above. Human eyes and brains are highly sensitive to subtle changes in color, texture, and other surface characteristics. Having the crew observe the lunar surface directly – equipped with questions that scientists didn’t even know to ask during Apollo missions – could form the basis for future scientific investigations into the Moon’s geological history, the lunar environment, or new impact sites.
      This visualization simulates what the crew of Artemis II might see out the Orion windows on the day of their closest approach to the Moon. It compresses 36 hours into a little more than a minute as it flies the virtual camera on a realistic trajectory that swings the spacecraft around the Moon’s far side. This sample trajectory is timed so that the far side is fully illuminated when the astronauts fly by, but other lighting conditions are possible depending on the exact Artemis II launch date. The launch is scheduled for no later than April of 2026. NASA Goddard/Ernie Wright
      It will also offer the first opportunity for an Artemis mission to integrate science flight control operations. From their console in the flight control room in mission control, a science officer will consult with a team of scientists with expertise in impact cratering, volcanism, tectonism, and lunar ice, to provide real-time data analysis and guidance to the Artemis II crew in space. During the mission, the lunar science team will be located in mission control’s Science Evaluation Room at NASA’s Johnson Space Center in Houston. 

      Lessons learned during Artemis II will pave the way for lunar science operations on future missions.

      CubeSats

      Several additional experiments are hitching a ride to space onboard Artemis II in the form of CubeSats – shoe-box-sized technology demonstrations and scientific experiments. Though separate from the objectives of the Artemis II mission, they may enhance understanding of the space environment.

      Technicians install the Korea AeroSpace Administration (KASA) K-Rad Cube within the Orion stage adapter inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Tuesday, Sept. 2, 2025. The K-Rad Cube, about the size of a shoebox, is one of the CubeSats slated to fly on NASA’s Artemis II test flight in 2026. Credit: NASA Four international space agencies have signed agreements to send CubeSats into space aboard the SLS (Space Launch System) rocket, each with their own objectives. All will be released from an adapter on the SLS upper stage into a high-Earth orbit, where they will conduct an orbital maneuver to reach their desired orbit.

      ATENEA – Argentina’s Comisión Nacional de Actividades Espaciales will collect data on radiation doses across various shielding methods, measure the radiation spectrum around Earth, collect GPS data to help optimize future mission design, and validate a long-range communications link.
      K-Rad Cube – The Korea Aerospace Administration will use a dosimeter made of material designed to mimic human tissue to measure space radiation and assess biological effects at various altitudes across the Van Allen radiation belt.
      Space Weather CubeSat – The Saudi Space Agency will measure aspects of space weather, including radiation, solar X-rays, solar energetic particles, and magnetic fields, at a range of distances from Earth.
      TACHELES – The Germany Space Agency DLR will collect measurements on the effects of the space environment on electrical components to inform technologies for lunar vehicles.
      Together, these research areas will inform plans for future missions within NASA’s Artemis campaign. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
  • Check out these Videos

×
×
  • Create New...