Jump to content

NASA’s Juno Gets a Close-Up Look at Lava Lakes on Jupiter’s Moon Io


NASA

Recommended Posts

  • Publishers

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Jupiter’s moon Io
The JunoCam instrument aboard NASA’s Juno spacecraft captured two volcanic plumes rising above the horizon of Jupiter’s moon Io. The image was taken Feb. 3 from a distance of about 2,400 miles (3,800 kilometers).
Image data: NASA/JPL-Caltech/SwRI/MSSS, Image processing by Andrea Luck (CC BY)

Infrared imagery from the solar-powered spacecraft heats up the discussion on the inner workings of Jupiter’s hottest moon.

New findings from NASA’s Juno probe provide a fuller picture of how widespread the lava lakes are on Jupiter’s moon Io and include first-time insights into the volcanic processes at work there. These results come courtesy of Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument, contributed by the Italian Space Agency, which “sees” in infrared light. Researchers published a paper on Juno’s most recent volcanic discoveries on June 20 in the journal Nature Communications Earth and Environment.

Io has intrigued the astronomers since 1610, when Galileo Galilei first discovered the Jovian moon, which is slightly larger than Earth. Some 369 years later, NASA’s Voyager 1 spacecraft captured a volcanic eruption on the moon. Subsequent missions to Jupiter, with more Io flybys, discovered additional plumes — along with lava lakes. Scientists now believe Io, which is stretched and squeezed like an accordion by neighboring moons and massive Jupiter itself, is the most volcanically active world in the solar system. But while there are many theories on the types of volcanic eruptions across the surface of the moon, little supporting data exists.

In both May and October 2023, Juno flew by Io, coming within about 21,700 miles (35,000 kilometers) and 8,100 miles (13,000 kilometers), respectively. Among Juno’s instruments getting a good look at the beguiling moon was JIRAM.

Infrared data
Infrared data collected Oct. 15, 2023, by the JIRAM instrument aboard NASA’s Juno shows Chors Patera, a lava lake on Jupiter’s moon Io. The team believes the lake is largely covered by a thick, molten crust, with a hot ring around the edges where lava from Io’s interior is directly exposed to space.
NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM/MSSS

Designed to capture the infrared light (which is not visible to the human eye) emerging from deep inside Jupiter, JIRAM probes the weather layer down to 30 to 45 miles (50 to 70 kilometers) below the gas giant’s cloud tops. But during Juno’s extended mission, the mission team has also used the instrument to study the moons Io, Europa, Ganymede, and Callisto. The JIRAM Io imagery showed the presence of bright rings surrounding the floors of numerous hot spots.

“The high spatial resolution of JIRAM’s infrared images, combined with the favorable position of Juno during the flybys, revealed that the whole surface of Io is covered by lava lakes contained in caldera-like features,” said Alessandro Mura, a Juno co-investigator from the National Institute for Astrophysics in Rome. “In the region of Io’s surface in which we have the most complete data, we estimate about 3% of it is covered by one of these molten lava lakes.” (A caldera is a large depression formed when a volcano erupts and collapses.)

Fire-Breathing Lakes

JIRAM’s Io flyby data not only highlights the moon’s abundant lava reserves, but also provides a glimpse of what may be going on below the surface. Infrared images of several Io lava lakes show a thin circle of lava at the border, between the central crust that covers most of the lava lake and the lake’s walls. Recycling of melt is implied by the lack of lava flows on and beyond the rim of the lake, indicating that there is a balance between melt that has erupted into the lava lakes and melt that is circulated back into the subsurface system.

This animation is an artist’s concept of Loki Patera, a lava lake on Jupiter’s moon Io, made using data from the JunoCam imager aboard NASA’s Juno spacecraft. With multiple islands in its interior, Loki is a depression filled with magma and rimmed with molten lava. NASA/JPL-Caltech/SwRI/MSSS

“We now have an idea of what is the most frequent type of volcanism on Io: enormous lakes of lava where magma goes up and down,” said Mura. “The lava crust is forced to break against the walls of the lake, forming the typical lava ring seen in Hawaiian lava lakes. The walls are likely hundreds of meters high, which explains why magma is generally not observed spilling out of the paterae” — bowl-shaped features created by volcanism — “and moving across the moon’s surface.”

JIRAM data suggests that most of the surface of these Io hot spots is composed of a rocky crust that moves up and down cyclically as one contiguous surface due to the central upwelling of magma. In this hypothesis, because the crust touches the lake’s walls, friction keeps it from sliding, causing it to deform and eventually break, exposing lava just below the surface.

An alternative hypothesis remains in play: Magma is welling up in the middle of the lake, spreading out and forming a crust that sinks along the rim of the lake, exposing lava.

“We are just starting to wade into the JIRAM results from the close flybys of Io in December 2023 and February 2024,” said Scott Bolton, principal investigator for Juno at the Southwest Research Institute in San Antonio. “The observations show fascinating new information on Io’s volcanic processes. Combining these new results with Juno’s longer-term campaign to monitor and map the volcanoes on Io’s never-before-seen north and south poles, JIRAM is turning out to be one of the most valuable tools to learn how this tortured world works.”

Juno executed its 62nd flyby of Jupiter — which included an Io flyby at an altitude of about 18,175 miles (29,250 kilometers) — on June 13. The 63rd flyby of the gas giant is scheduled for July 16.

More About the Mission

NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.

More information about Juno is available at:

https://science.nasa.gov/mission/juno

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Karen Fox / Charles Blue
NASA Headquarters
202-385-1287 / 202-802-5345
karen.c.fox@nasa.gov / charles.e.blue@nasa.gov

Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254dschmid@swri.org

Share

Details

Last Updated
Jun 26, 2024

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read
      Sols 4234-4235: And That’s (Nearly) a Wrap on Mammoth Lakes!
      This image was taken by Mast Camera (Mastcam) onboard NASA’s Mars rover Curiosity on Sol 4219 (2024-06-19 02:21:12 UTC). Earth Planning Date: Wednesday, July 3, 2024
      We received the data from our SAM analysis of the Mammoth Lakes sample late Monday afternoon. After chewing over the results, the team declared we are very happy with all of the analyses we’ve done with this sample, and we are ready to move on to greener pastures… er, redder rocks! This decision means that we will go ahead and clear out the drill assembly in today’s plan, and subsequently use the arm to collect MAHLI and APXS observations of the pile of drill tailings around the drill hole.
      We’ll also have some time for remote sensing activities that use our mast-mounted instruments. Even though we’ve been parked at this location for several weeks, we’re still finding lots of things to look at! ChemCam will collect LIBS observations on a light-toned rock target named “Finger Peaks,” as well as a bumpy rock named “Glen Aulin.” We’ll also collect some additional Mastcam images of interesting features in the area, and a long-distance RMI mosaic of a target named “Rock Island Pass.” Several kinds of environmental monitoring activities will round out the plan.
      It’s been a very productive drill sampling campaign here at Mammoth Lakes, our first after crossing into Gediz Vallis channel, and I’m excited to start getting ready to move on. What’s around the corner in this fascinating area of Mt. Sharp?
      Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Jul 03, 2024 Related Terms
      Blogs Explore More
      5 min read Sols 4232-4233: Going For a Ride, Anyone?


      Article


      2 days ago
      2 min read Sols 4229-4231: More Analyses of the Mammoth Lakes 2 Sample!


      Article


      2 days ago
      2 min read Sols 4226-4228: A Powerful Balancing Act


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By NASA
      NASA astronaut Andre Douglas poses for a portrait at NASA’s Johnson Space Center in Houston.Credits: NASA/Josh Valcarcel NASA has selected astronaut Andre Douglas as its backup crew member for the agency’s Artemis II test flight, the first crewed mission under NASA’s Artemis campaign.
      Douglas will train alongside NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and Canadian Space Agency (CSA) astronaut Jeremy Hansen.
      In the event a NASA astronaut is unable to take part in the flight, Douglas would join the Artemis II crew.
      “Andre’s educational background and extensive operational experience in his various jobs prior to joining NASA are clear evidence of his readiness to support this mission,” said Joe Acaba, chief astronaut at NASA’s Johnson Space Center in Houston. “He excelled in his astronaut candidate training and technical assignments, and we are confident he will continue to do so as NASA’s backup crew member for Artemis II.”  
      The CSA announced Jenni Gibbons as its backup crew member in November 2023. Gibbons would step into the mission to represent Canada should Hansen not be available.
      “Canada’s seat on the historic Artemis II flight is a direct result of our contribution of Canadarm3 to the lunar Gateway. Jenni Gibbons’ assignment as backup is of utmost importance for our country,” said CSA President Lisa Campbell. “Since being recruited, Jenni has distinguished herself repeatedly through her work with NASA and the CSA. She is also a tremendous role model for Canada’s future scientists, engineers, and explorers.”
      The selection of Douglas and Gibbons as backup crew members for Artemis II is independent of the selection of crew members for Artemis III. NASA has not yet selected crew members for Artemis flights beyond Artemis II. All active NASA astronauts are eligible for assignment to any human spaceflight mission.
      The approximately 10-day Artemis II test flight will launch on the agency’s powerful SLS (Space Launch System) rocket, prove the Orion spacecraft’s life-support systems, and validate the capabilities and techniques needed for humans to live and work in deep space.
      More on Artemis II backup crew
      Douglas graduated from NASA’s astronaut candidate training program in March 2024. He is a Virginia native and earned a bachelor’s degree in Mechanical Engineering from the U.S. Coast Guard Academy in New London, Connecticut, as well as four post-graduate degrees from various institutions, including a doctorate in Systems Engineering from George Washington University in Washington. Douglas served in the U.S. Coast Guard as a naval architect, salvage engineer, damage control assistant, and officer of the deck. He also worked as a staff member at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, working on maritime robotics, planetary defense, and space exploration missions for NASA. Douglas participated in the Joint EVA and Human Surface Mobility Test Team 5, working with a specialized group that develops, integrates, and executes human-in-the-loop tests, analog missions, and Moonwalks. Most recently, Douglas worked with teams on the development of the lunar terrain vehicle, pressurized rover, lunar Gateway and lunar spacesuit.
      Gibbons was recruited as a CSA astronaut in 2017 and completed her basic training in 2020. Since then, Gibbons has continued to serve Canada’s space program and has worked in different positions, including Mission Control as a capsule communicator (CAPCOM) during spacewalks, and commercial spacecraft and daily International Space Station operations. Gibbons holds an honors bachelor’s degree in Mechanical Engineering from McGill University in Montreal. While at McGill, she conducted research on flame propagation in microgravity in collaboration with CSA and Canada’s National Research Council Flight Research Laboratory in Ontario. She holds a doctorate in engineering from Jesus College at the University of Cambridge, England.
      Under NASA’s Artemis campaign, the agency is establishing the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all. 
      Learn more about NASA’s Artemis campaign at:
      https://www.nasa.gov/artemis
      -end-
      Rachel Kraft/Madison Tuttle
      Headquarters, Washington
      202-358-1100
      rachel.h.kraft@nasa.gov/madison.e.tuttle@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Jul 03, 2024 LocationNASA Headquarters Related Terms
      Artemis 2 Andre Douglas Artemis Astronauts Humans in Space View the full article
    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read
      Sols 4229-4231: More Analyses of the Mammoth Lakes 2 Sample!
      The inlet into to the SAM instrument open and awaiting sample delivery. This image was taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4226 (2024-06-26 11:06:46 UTC). Earth Planning Date: Friday, June 28, 2024
      After reviewing results from the Evolved Gas Analysis (EGA) experiment that were downlinked yesterday afternoon (Sols 4226-4228: A Powerful Balancing Act), the SAM team decided they’d like to go ahead with a second experiment to analyze the Mammoth Lakes 2 drilled sample. This experiment is known as the Gas Chromatograph/Mass Spectrometer (GCMS) experiment.
      SAM, whose full name is Sample Analysis at Mars, is actually a suite of three different analytical instruments that are used to measure the composition of gases which come off drilled samples as we bake them in SAM’s ovens. The three analytical instruments are called a gas chromatograph, quadrupole mass spectrometer, and tunable laser spectrometer. Each one is particularly suited for measuring specific kinds of compounds in the gases, and these include things like water, methane, carbon, or organic (carbon-containing) molecules. In the EGA experiment that we ran in our last plan, we baked the Mammoth Lakes 2 sample and measured the gas compositions using the tunable laser spectrometer and quadrupole mass spectrometer. In this plan, we’ll deliver a new pinch of sample to the SAM oven and then measure the composition of the gases that are released using the gas chromatograph and quadrupole mass spectrometer. By running both experiments, we’ll have a more thorough understanding of the materials that are in this rock.
      The SAM GCMS experiment takes a lot of power to run, so it will be the focus of today’s three-sol plan. However, we still managed to fit in some other science activities around the experiment, including a ChemCam RMI mosaic of some far-off ridges, a ChemCam LIBS observation of a nodular target named “Trail Lakes,” environmental monitoring activities, and a couple Mastcam mosaics to continue imaging the terrain around the rover. Should be another fun weekend of science in Gale crater!
      Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Jul 01, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4226-4228: A Powerful Balancing Act


      Article


      4 days ago
      2 min read Interesting Rock Textures Galore at Bright Angel


      Article


      4 days ago
      2 min read Sol 4225: Sliding Down Horsetail Falls


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      View of the Nova-C landing area near Malapert A in the South Pole region of the Moon. North is to the right. Taken by LROC (Lunar Reconnaissance Orbiter Camera) NAC (Narrow Angle Camera).NASA/GSFC/Arizona State University NASA has released two white papers associated with the agency’s Moon to Mars architecture efforts. The papers, one on lunar mobility drivers and needs, and one on lunar surface cargo, detail NASA’s latest thinking on specific areas of its lunar exploration strategy.
      While NASA has established a yearly cadence of releasing new documents associated with its Moon to Mars architecture, the agency occasionally releases mid-cycle findings to share essential information in areas of interest for its stakeholders.
      “Lunar Mobility Drivers and Needs” discusses the need to move cargo and assets on the lunar surface, from landing sites to points of use, and some of the factors that will significantly impact mobility systems.
      “Lunar Surface Cargo” analyses some of the current projected needs — and identifies current capability gaps — for the transportation of cargo to the lunar surface.
      The Moon to Mars architecture approach incorporates feedback from U.S. industry, academia, international partners, and the NASA workforce. The agency typically releases a series of technical documents at the end of its annual analysis cycle, including an update of the Architecture Definition Document and white papers that elaborate on frequently raised topics.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      You can find all of NASA’s Moon to Mars architecture documents at:
      https://www.nasa.gov/moontomarsarchitecture
      Share
      Details
      Last Updated Jun 28, 2024 Related Terms
      Humans in Space Explore More
      2 min read Unity in Orbit: Astronauts Soar with Pride Aboard Station 
      Article 3 days ago 5 min read Six Adapters for Crewed Artemis Flights Tested, Built at NASA Marshall
      Article 3 days ago 5 min read Lakita Lowe: Leading Space Commercialization Innovations and Fostering STEM Engagement 
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...