Jump to content

The 1998 Florida Firestorm and NASA’s Kennedy Space Center


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Lightning Strike at Kennedy Space Center in 2014
A lightning strike at Launch Complex 39B at NASA’s Kennedy Space Center in Florida in July 2014. Bolts like this are a regular occurrence in central Florida. Similar lightning strikes sparked the 1998 Florida Firestorm.
NASA

Lightning Crashes

East central Florida’s natural environment and climate have shaped, and delayed, Kennedy Space Center launch operations since the 1960s. Torrential pop-up thunderstorms, Atlantic hurricanes, roasting heat, and other climatic phenomena, including lightning and fire, repeatedly hampered mission timelines and created dangerous conditions for astronauts and workers.

Kennedy Space Center personnel understood the dangers of lightning strikes all too well by 1998. In 1969, two bolts famously struck the Apollo 12 launch vehicle shortly after liftoff. A few years earlier, a worker was killed when lightning hit a Kennedy launch pad. These and other events motivated NASA to install new lightning rods and create new launch procedures.

The opening segment of this video highlights the two lightning bolts that struck the Apollo 12 launch vehicle shortly after launch.

Fire in the Sky

Although NASA officials were familiar with the dangers lightning posed as the twenty-first century dawned, a 1998 lightning strike created an unprecedented environmental threat to Kennedy Space Center and its launch operations.

In May 1998, lightning sparked a fire in a wooded area of eastern central Florida. This lightning strike and fire were not extraordinary events. Quite the contrary. Over the course of central Florida’s long history, lightning regularly ignited wildfires in pine forests. These blazes were often short lived, but they served an important function. Namely, they burned off flammable undergrowth and rejuvenated Florida’s wilderness environments.

Aerial view of the 1998 Fire with billowing smoke
This photograph of an area of the 1998 Firestorm was taken from a NASA Huey UH-1 helicopter. The helicopter was outfitted with a Forward Looking Infrared Radar (FLIR) camera and a portable global positioning satellite (GPS) system to support Florida’s Division of Forestry as they fought the fire.
NASA

But the 1998 fire was different. Instead of a lightning strike creating a small fire, which rain and other natural conditions eventually extinguished, it grew into a colossal inferno dubbed the 1998 Firestorm. It was an inferno fed by other lightning sparked fires, a rainy winter, spring drought conditions, and fire suppression tactics.

Beginning in the mid-1900s, residents and fire officials in central Florida regularly extinguished wildfires before they had a chance to burn off flammable undergrowth. This led to a buildup of combustible material in the area’s woodlands. It was especially the case after a rainy winter season in early 1998 led to an abundance of low-lying vegetation. Fed by this tinder and a springtime drought, the summer fires spread quickly. They ultimately burned roughly 500,000 acres and created massive clouds of billowing smoke and other environmental hazards.

At one point the smoke from the fires was so thick, officials closed a 140-mile stretch of Interstate 95 and NASCAR officials postponed the annual 400-mile race at Daytona International Speedway, traditionally held on July 4th.

View from the backseat of a NASA Huey UH-1 helicopter showing a KSC Security Services employee pointing at a screen.
The scene inside a NASA Huey UH-1 helicopter while it flies over fires burning in Volusia County, Florida.
NASA

Battling the Blaze

In response to the flames, Brevard County fire official Jeffrey Mahoney publicly requested that Florida Governor Lawton Chiles provide more firefighters and resources. Mahoney argued, and many agreed, that the 500 firefighters valiantly battling the blaze in an effort to save homes and property were no match for the raging fire. “We are asking them to do the impossible,” Mahoney told a reporter during the early days of the fire.

We are asking them to do the impossible."

Jeffrey Mahoney

Jeffrey Mahoney

Brevard County Assistant Fire Chief

Understanding the severity of the situation, Governor Chiles and federal officials allocated more resources to fighting the fires. Ultimately, thousands of firefighters fought the blazes that raged throughout the state, including on Kennedy Space Center property.

Flames Threaten Kennedy

During the early weeks of the wildfire outbreak, NASA operations continued as usual. In early June, the agency successfully launched and landed STS-91. But ultimately the fires spread to center property and created operational concerns.

burnt trees and a smokey sky as seen on Kennedy property in June 1998
This photo of a burned wooded area on Kennedy property was taken on June 22, 1998. Around the time of this photo, fire threatened Kennedy Space Center’s South Repeater Building and other structures.
NASA

In late June, firefighters had to battle back a blaze that threatened the South Repeater Building, a fiber-optics relay station and storage facility on the south side of center property. By June 22, fires had burned 3,000 acres of the Merritt Island National Wildlife Refuge that surrounded Kennedy Space Center. The fire’s intensity and smoke even forced officials to temporarily close State Road 3.

Kennedy employee Lisa Braden was one of the last people to drive on the road before it was closed. “The smoke was so thick, you couldn’t see the road,” Braden told a reporter. “I went out on a job, and when I came back, the fire was crossing the street.”

Fortunately, by mid-July the arrival of long-hoped-for summer rains and successful fire control techniques helped extinguish most of the fires. Still, NASA launch officials remembered the firestorm in the weeks leading up to the October 1998 launch of STS-95.

Smoke and Shuttle Launches

It was in the shadows, or perhaps the smoke, of the fires that NASA created the STS-95 Flight Readiness Review. The document provides a window into the thinking and concerns of safety officials, launch controllers, NASA engineers, and more, just weeks before launch.

During the Shuttle Era, NASA’s readiness reviews accompanied the final readiness meeting the agency held two weeks before each launch. At this meeting, those involved in the mission ensured that earlier technical issues, and other concerns, had been satisfactorily resolved. Most importantly, a “go” or “no-go” launch decision was made at the end of this meeting.

Each readiness review document and meeting were unique. They each provide a window into the particulars of individual shuttle launches. The two Smoke Plume Rule diagrams in the STS-95 Flight Readiness Review, make it clear that launch officials had wildfire smoke on their minds.

Diagram entitled Smoke Plume Rule
This illustration is from the STS-95 Readiness Review. It reminded launch officials that a launch was a “no-go” if the shuttle was going to travel through a cumulus cloud attached to a smoke plume. Note the burning vegetation to the left of the shuttle.
NASA/Kennedy Space Center Archive
Diagram entitled Smoke Plum Rule where a smoke plume is not attached to a cumulus cloud
This second illustration is also from the STS-95 Flight Readiness Review. It highlights the part of the Smoke Plume Rule that states a shuttle should not be launched through a cumulus cloud that developed from a smoke plume, for at least 60 minutes after the cloud separates from the plume.
NASA/Kennedy Space Center Archive

STS-95 launched on a clear smoke-free day on October 29, 1998. Still, the charred Florida landscape Space Shuttle Discovery soared away from after liftoff stood as testament to the dangers of wildfire. With this in mind, officials took action to help ensure a fire event as widespread as the 1998 Firestorm never happened again.

Only You?

Since 1998, controlled burns have been regularly conducted throughout wooded areas of Florida and on Kennedy Space Center property. These prescribed burns were, in part, a legacy of the 1998 Firestorm. Along with prescribed burns, NASA developed and used other technologies and tactics to control wildfires on Kennedy property after 1998.

A helicopter dumps a large bucket of water on a forest
NASA used Huey UH-1 helicopters for security and medical evacuations before the 1998 fires. After the fires, NASA outfitted the helicopters with buckets designed to scoop up Florida coastal waters and drop them on wildfires. This photo, from 2000, shows a helicopter and bucket at work.
NASA

As the number of launches at Kennedy increases (in 2023 there were a record 72 orbital launches from Kennedy Space Center), and climate change makes severe weather more prevalent, prescribed burns and other wildfire control strategies are essential components of mission preparedness and environmental stewardship in and around the center.

Smokey the Bear at International Space Station in 2012
On May 15, 2012, Smokey the Bear traveled to the International Space Station with NASA astronaut Joe Acaba. As a recognized symbol for wildfire prevention, Smokey’s 2012 space adventure highlighted NASA initiatives dedicated to helping researchers better understand wildfires.
NASA

About the Author

Brad Massey

Brad Massey

NASA Historian

Brad Massey is a historian at NASA's Kennedy Space Center. His research focuses on NASA's earth science initiatives and Florida's environmental history.

Share

Details

Last Updated
Jun 25, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Soyuz MS-26 spacecraft is seen as it lands in a remote area near the town of Zhezkazgan, Kazakhstan with Expedition 72 NASA astronaut Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner aboard, April 19, 2025 (April 20, 2025, Kazakhstan time). The trio are returning to Earth after logging 220 days in space as members of Expeditions 71 and 72 aboard the International Space Station.NASA/Bill Ingalls NASA astronaut Don Pettit returned to Earth Saturday, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, concluding a seven-month science mission aboard the International Space Station.
      The trio departed the space station at 5:57 p.m. EDT aboard the Soyuz MS-26 spacecraft before making a safe, parachute-assisted landing at 9:20 p.m. (6:20 a.m. on Sunday, April 20, Kazakhstan time), southeast of Dzhezkazgan, Kazakhstan. Pettit also celebrates his 70th birthday on Sunday, April 20.
      Spanning 220 days in space, Pettit and his crewmates orbited the Earth 3,520 times, completing a journey of 93.3 million miles. Pettit, Ovchinin, and Vagner launched and docked to the orbiting laboratory on Sept. 11, 2024.
      During his time aboard the space station, Pettit conducted research to enhance in-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions. He also used his surroundings aboard station to conduct unique experiments in his spare time and captivate the public with his photography.
      This was Pettit’s fourth spaceflight, where he served as a flight engineer for Expeditions 71 and 72. He has logged 590 days in orbit throughout his career. Ovchinin completed his fourth flight, totaling 595 days, and Vagner has earned an overall total of 416 days in space during two spaceflights.
      NASA is following its routine postlanding medical checks, the crew will return to the recovery staging area in Karaganda, Kazakhstan. Pettit will then board a NASA plane bound for the agency’s Johnson Space Center in Houston. According to NASA officials at the landing site, Pettit is doing well and in the range of what is expected for him following return to Earth.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a strong low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future astronaut missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 19, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      International Space Station (ISS) Expedition 72 Humans in Space ISS Research View the full article
    • By NASA
      NASA researchers are sending three air quality monitors to the International Space Station to test them for potential future use on the Moon.Credit: NASA/Sara Lowthian-Hanna As NASA prepares to return to the Moon, studying astronaut health and safety is a top priority. Scientists monitor and analyze every part of the International Space Station crew’s daily life—down to the air they breathe. These studies are helping NASA prepare for long-term human exploration of the Moon and, eventually, Mars.

      As part of this effort, NASA’s Glenn Research Center in Cleveland is sending three air quality monitors to the space station to test them for potential future use on the Moon. The monitors are slated to launch on Monday, April 21, aboard the 32nd SpaceX commercial resupply services mission for NASA.

      Like our homes here on Earth, the space station gets dusty from skin flakes, clothing fibers, and personal care products like deodorant. Because the station operates in microgravity, particles do not have an opportunity to settle and instead remain floating in the air. Filters aboard the orbiting laboratory collect these particles to ensure the air remains safe and breathable.

      Astronauts will face another air quality risk when they work and live on the Moon—lunar dust.
      “From Apollo, we know lunar dust can cause irritation when breathed into the lungs,” said Claire Fortenberry, principal investigator, Exploration Aerosol Monitors project, NASA Glenn. “Earth has weather to naturally smooth dust particles down, but there is no atmosphere on the Moon, so lunar dust particles are sharper and craggier than Earth dust. Lunar dust could potentially impact crew health and damage hardware.”

      Future space stations and lunar habitats will need monitors capable of measuring lunar dust to ensure air filtration systems are functioning properly. Fortenberry and her team selected commercially available monitors for flight and ground demonstration to evaluate their performance in a spacecraft environment, with the goal of providing a dust monitor for future exploration systems.
      NASA Glenn Research Center’s Claire Fortenberry holds a dust sample collected from International Space Station air filters.Credit: NASA/Sara Lowthian-Hanna Glenn is sending three commercial monitors to the space station to test onboard air quality for seven months. All three monitors are small: no bigger than a shoe box. Each one measures a specific property that provides a snapshot of the air quality aboard the station. Researchers will analyze the monitors based on weight, functionality, and ability to accurately measure and identify small concentrations of particles in the air.

      The research team will receive data from the space station every two weeks. While those monitors are orbiting Earth, Fortenberry will have three matching monitors at Glenn. Engineers will compare functionality and results from the monitors used in space to those on the ground to verify they are working as expected in microgravity. Additional ground testing will involve dust simulants and smoke.

      Air quality monitors like the ones NASA is testing also have Earth-based applications. The monitors are used to investigate smoke plumes from wildfires, haze from urban pollution, indoor pollution from activities like cooking and cleaning, and how virus-containing droplets spread within an enclosed space.

      Results from the investigation will help NASA evaluate which monitors could accompany astronauts to the Moon and eventually Mars. NASA will allow the manufacturers to review results and ensure the monitors work as efficiently and effectively as possible. Testing aboard the space station could help companies investigate pollution problems here on Earth and pave the way for future missions to the Red Planet.
      NASA Glenn Research Center’s Claire Fortenberry demonstrates how space aerosol monitors analyze the quality of the air.Credit: NASA/Sara Lowthian-Hanna “Going to the Moon gives us a chance to monitor for planetary dust and the lunar environment,” Fortenberry said. “We can then apply what we learn from lunar exploration to predict how humans can safely explore Mars.”
      NASA commercial resupply missions to the International Space Station deliver scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, significantly increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      Learn more about NASA and SpaceX’s 32nd commercial resupply mission to the space station:
      https://www.nasa.gov/nasas-spacex-crs-32/
      Explore More
      3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 17 hours ago 4 min read Science Meets Art: NASA Astronaut Don Pettit Turns the Camera on Science
      Article 1 day ago 1 min read Recognizing Employee Excellence 
      Article 1 day ago View the full article
    • By European Space Agency
      Image: This very high-resolution image captures the Egyptian city of Giza and its surrounding area, including the world-famous Giza Pyramid Complex. View the full article
    • By NASA
      The space shuttle Discovery launches from NASA’s Kennedy Space Center in Florida, heading through Atlantic skies toward its 51-D mission. The seven-member crew lifted off at 8:59 a.m. ET, April 12, 1985.NASA The launch of space shuttle Discovery is captured in this April 12, 1985, photo. This mission, STS-51D, was the 16th flight of NASA’s Space Shuttle program, and Discovery’s fourth flight.
      Discovery carried out 39 missions, more than any other space shuttle. Its missions included deploying and repairing the Hubble Space Telescope and 13 flights to the International Space Station – including the very first docking in 1999. The retired shuttle now resides at the National Air and Space Museum’s Steven F. Udvar-Hazy Center in Virginia.
      Learn more about NASA’s Space Shuttle Program.
      Image credit: NASA
      View the full article
    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman spoke to hundreds of cadets and national leaders during the 2025 National Conclave for Arnold Air Society and Silver Wings, emphasizing the evolving role of the Space Force in the future fight.
      View the full article
  • Check out these Videos

×
×
  • Create New...